4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid has been researched along with tryptoquivaline* in 2 studies
2 other study(ies) available for 4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and tryptoquivaline
Article | Year |
---|---|
Progesterone inhibits folic acid transport in human trophoblasts.
The aim of this work was to test the putative involvement of members of the ABC superfamily of transporters on folic acid (FA) cellular homeostasis in the human placenta. [(3)H]FA uptake and efflux in BeWo cells were unaffected or hardly affected by multidrug resistance 1 (MDR1) inhibition (with verapamil), multidrug resistance protein (MRP) inhibition (with probenecid) or breast cancer resistance protein (BCRP) inhibition (with fumitremorgin C). However, [(3)H]FA uptake and efflux were inhibited by progesterone (200 microM). An inhibitory effect of progesterone upon [(3)H]FA uptake and efflux was also observed in human cytotrophoblasts. Moreover, verapamil and ss-estradiol also reduced [(3)H]FA efflux in these cells. Inhibition of [(3)H]FA uptake in BeWo cells by progesterone seemed to be very specific since other tested steroids (beta-estradiol, corticosterone, testosterone, aldosterone, estrone and pregnanediol) were devoid of effect. However, efflux was also inhibited by beta-estradiol and corticosterone and stimulated by estrone. Moreover, the effect of progesterone upon the uptake of [(3)H]FA by BeWo cells was concentration-dependent (IC(50 )= 65 [range 9-448] microM) and seems to involve competitive inhibition. Also, progesterone (1-400 microM) did not affect either [(3)H]FA uptake or efflux at an external acidic pH. Finally, inhibition of [(3)H]FA uptake by progesterone was unaffected by either 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), a known inhibitor of the reduced folate carrier (RFC), or an anti-RFC antibody. These results suggest that progesterone inhibits RFC. In conclusion, our results show that progesterone, a sterol produced by the placenta, inhibits both FA uptake and efflux in BeWo cells and primary cultured human trophoblasts. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; ATP-Binding Cassette Transporters; Estradiol; Folic Acid; Humans; Indoles; Indomethacin; Kinetics; p-Aminohippuric Acid; Probenecid; Progesterone; Trophoblasts; Verapamil | 2007 |
Absorption of folate by Caco-2 cells is not affected by high glucose concentration.
The aim of this work was to investigate the effect of high glucose exposure on the absorption of folate by Caco-2 cells. We verified that apical high glucose did not affect the apical uptake of [(3)H]folate. Both different concentrations of glucose (10-45 mM) and different exposure times (10 min-24 h) were tested. Furthermore, apical high glucose (30 mM) did not affect the intracellular steady-state levels of [(3)H]folate, and simultaneous apical and basolateral high glucose (30 mM) did not change the apical-to-basolateral apparent permeability (P(app)) to [(3)H]folate. Both the apical uptake and the steady-state intracellular levels of [(3)H]folate were strongly reduced by 5-methyltetrahydrofolate, methotrexate, SITS (4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and indomethacin, but were not affected or only hardly affected by p-aminohippuric acid and fumitremorgin C. Moreover, DIDS and indomethacin significantly reduced (by 50-60%) the apical-to-basolateral P(app) to [(3)H]folate, but [(3)H]folate present in the cells at the end of the experiment was higher in the case of indomethacin. Fumitremorgin C had no effect. The effect of the drugs tested was not changed or only hardly changed by high glucose. In conclusion, absorption of [(3)H]folate is not modulated by either apical or basolateral high glucose exposure in Caco-2 cells. Moreover, our results suggest that the apical uptake of [(3)H]folate by Caco-2 cells involves the Reduced Folate Transporter (but not the Organic Anion Transporter), and that Multidrug Resistance Protein and/or Organic Anion Transporter (but not Breast Cancer Resistance Protein) may mediate apical efflux of [(3)H]folate. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; ATP Binding Cassette Transporter, Subfamily B; Biological Transport; Caco-2 Cells; Cell Membrane Permeability; Dose-Response Relationship, Drug; Folic Acid; Glucose; Humans; Indoles; Indomethacin; Intestinal Absorption; Intestinal Mucosa; Membrane Transport Proteins; Methotrexate; Organic Anion Transporters; p-Aminohippuric Acid; Reduced Folate Carrier Protein; Tetrahydrofolates; Time Factors | 2006 |