4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and pyranine

4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid has been researched along with pyranine* in 1 studies

Other Studies

1 other study(ies) available for 4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and pyranine

ArticleYear
Regulation of intracellular pH in BALB/c 3T3 cells. Bicarbonate raises pH via NaHCO3/HCl exchange and attenuates the activation of Na+/H+ exchange by serum.
    The Journal of biological chemistry, 1991, Jan-25, Volume: 266, Issue:3

    There is abundant evidence implicating a role for intracellular pH (pHin) in the proliferative response of many cells to mitogenic agents. In mammalian cells, pHin is generally regulated by two systems: Na+/H+ exchange and HCO3- transport. Activation of Na+/H+ exchange is one of the earliest responses of mammalian cells to mitogens. In the absence of HCO3-, this activation raises the pHin. However, in the presence of HCO3-, the effect of mitogens on the pHin is unclear. HCO3- regulates pHin via mechanisms which can either acidify or alkalinize the cytosol, depending on the cell type and tissue of origin. BALB/c 3T3 mouse embryo cells are employed in the present study because they are used extensively in investigations of mammalian cell proliferation. Since these cells are of indefinite origin, there is no way to predict which HCO3- transporting system is operable in these cells and, hence, what effect HCO3- will have on the pHin and the response of pHin to mitogens. In the present article, we examine the mechanism and effect of HCO3(-)-based pHin regulation. Our results indicate that HCO3(-)-dependent pHin regulation in BALB/c 3T3 cells occurs via Na-HCO3/HCl exchange which raises pHin under physiological conditions. This activity can raise the pHin to above the set point of the activated Na+/H+ exchanger, consequently attenuating the mitogen-induced Na+/H+ exchange-mediated increases in pHin.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Arylsulfonates; Bicarbonates; Carrier Proteins; Cell Line; Chlorides; Cytosol; Hydrogen; Hydrogen-Ion Concentration; In Vitro Techniques; Kinetics; Mice; Sodium-Hydrogen Exchangers; Spectrometry, Fluorescence

1991