4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and phenylamil

4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid has been researched along with phenylamil* in 1 studies

Other Studies

1 other study(ies) available for 4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and phenylamil

ArticleYear
Evidence for a Na+-H+ exchange across human colonic basolateral plasma membranes purified from organ donor colons.
    Digestive diseases and sciences, 2000, Volume: 45, Issue:12

    The mechanism(s) of electrolyte transport across the human colonic contraluminal domain is not well understood. Current studies were undertaken to develop a technique for the isolation and purification of the human colonic basolateral membrane vesicles (BLMV) and to examine the presence of a Na+-H+ exchange process in these membranes. BLMV were purified from mucosal scrapings of organ donor proximal colons utilizing a Percoll density gradient centrifugation technique, and Na+ transport was examined utilizing a rapid filtration, technique. Our data demonstrate that purified basolateral membranes were enriched 10- to 11-fold in Na+, K+-ATPase activity compared to crude homogenate. Results consistent with the Na+-H+ exchange in BLMV are as follows: (1) an outwardly directed H+ gradient stimulated 22Na uptake; (2) 22Na uptake was markedly inhibited by EIPA and amiloride; (3) H+-gradient-stimulated 22Na uptake was not inhibited by bumetanide, SITS, DIDS, acetazolamide, phenamil and benzamil; (4) 22Na uptake was voltage insensitive; (5) 22Na uptake demonstrated saturation kinetics; (6) 22 Na uptake was markedly inhibited by Na+ and Li+ but was unaffected by N-methyl glucamine+, choline+, and NH4+. Immunoblotting studies demonstrated this Na+-H+ exchanger isoform to be represented by NHE1. In conclusion, a technique has been established for the purification of functional human proximal colonic BLMV, and an electroneutral Na+-H+ exchange process has been demonstrated in these membranes.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Acetazolamide; Amiloride; Biological Transport; Bumetanide; Carbonic Anhydrase Inhibitors; Cell Membrane; Colon; Humans; Hydrogen; In Vitro Techniques; Ion Exchange; Sodium; Sodium-Potassium-Exchanging ATPase; Tissue Donors

2000