4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and alpha-cyano-4-hydroxycinnamate

4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid has been researched along with alpha-cyano-4-hydroxycinnamate* in 3 studies

Other Studies

3 other study(ies) available for 4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and alpha-cyano-4-hydroxycinnamate

ArticleYear
Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots.
    Neuroscience, 1993, Volume: 53, Issue:4

    Exposure of nervous tissue to hypoxia results in interstitial acidification. There is evidence for concomitant decrease in extracellular pH to the increase in tissue lactate. In the present study, we used double-barrelled pH-sensitive microelectrodes to investigate the link between lactate transport and acid-base homeostasis in isolated rat spinal roots. Addition of different organic anions to the bathing solution at constant bath pH caused transient alkaline shifts in extracellular pH; withdrawal of these compounds resulted in transient acid shifts in extracellular pH. With high anion concentrations (30 mM), the largest changes in extracellular pH were observed with propionate > L-lactate approximately pyruvate > 2-hydroxy-2-methylpropionate. Changes in extracellular pH induced by 10 mM L- and D-lactate were of similar size. Lactate transport inhibitors alpha-cyano-4-hydroxycinnamic acid and 4,4'-dibenzamidostilbene-2,2'-disulphonic acid significantly reduced L-lactate-induced extracellular pH shifts without affecting propionate-induced changes in extracellular pH. Hypoxia produced an extracellular acidification that was strongly reduced in the presence of alpha-cyano-4-hydroxycinnamic acid and 4,4'-dibenzamidostilbene-2,2'-disulphonic acid. In contrast, amiloride and 4,4'-di-isothiocyanostilbene-2,2'-disulphonate were without effect on hypoxia-induced acid shifts. The results indicate the presence of a lactate-proton co-transporter in rat peripheral nerves. This transport system and not Na+/H+ or Cl-/HCO3- exchange seems to be the dominant mechanism responsible for interstitial acidification during nerve hypoxia.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Acidosis; Animals; Biological Transport, Active; Carrier Proteins; Coumaric Acids; Extracellular Space; Hydrogen-Ion Concentration; Hypoxia; Lactates; Male; Microelectrodes; Monocarboxylic Acid Transporters; Neural Pathways; Protons; Rats; Rats, Wistar; Spinal Cord

1993
Lactate transport in skeletal muscle cells: uptake in L6 myoblasts.
    Acta physiologica Scandinavica, 1991, Volume: 141, Issue:3

    During exercise, lactate is produced by degradation of glucose-6-phosphate during glycolysis in the contracting muscles. This lactate is metabolized during and after exercise in the muscle itself and also in the liver and other muscles, which can use it as an energy metabolite or can resynthetize glycogen. Lactate is transported in the blood, and the rate of muscular utilization may be limited by two factors: the rate of metabolic utilization by the muscle cell; and the rate of transport across the membrane regulating lactate transfer from the blood to the cell. We have studied lactate uptake in L6 muscle cells by incorporation of 14C-lactate. The uptake rates were linear for 20 seconds with 5 mM lactate and 10 seconds with 20 mM. The uptake during 10 seconds for physiological lactate concentrations (1-20 mM) gave a straight line passing through the origin. Lactate uptake was not altered by specific inhibitors of lactate transport (2.5 mM alpha cyano-4-hydroxycinnamic acid. 5 microM 4,4'-diisothiocyanostilbene-2,2'disulphonic acid) or by the stereospecific D-lactate inhibitor. The results suggest that L-lactate uptake in L6 cells occurs by passive diffusion.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Biological Transport; Cell Line; Coumaric Acids; Diffusion; Kinetics; Lactates; Muscles; Physical Exertion; Rats

1991
L(+)-lactate transport in perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors.
    Biochimica et biophysica acta, 1988, Oct-06, Volume: 944, Issue:2

    We have examined lactate uptake (as the rate of net muscle lactate accumulation) and unidirectional inward transport (measured by a paired-tracer dilution method) in muscle of the perfused skinned rat hindlimb. Inhibition of tracer influx (fractional uptake at 1 mM L(+)-lactate, 43.3 +/- 3.1% but only 32.9 +/- 1.8% at 50 mM lactate) suggested some competition between tracer and native forms of the carboxylate for transport. D(-)-lactate (50 mM) did not inhibit uptake of tracer L(+)-lactate. Pyruvate (25 mM), but none of five other monocarboxylates, inhibited uptake of tracer lactate, by 22% (P less than 0.01). Altering perfusate pH from 7.4 to 6.8 caused a 36% increase (P less than 0.001) in the unidirectional L(+)-lactate transport at 1 mM L(+)-lactate, whereas increasing pH to 7.7 reduced transport by 18% (P less than 0.01). Tracer lactate influx was inhibited by 500 microM 4-acetamido-4'-isothiocyanostilbene (SITS) (19%), 5 mM alpha-cyano-4-hydroxycinnamic acid (CIN) (20-30%), 1 mM amiloride (27%) and by a thiol group reagent p-chloromercuribenzenesulphonic acid (pCMBS) (26%). Overall the results indicate that at least two processes are involved in the transfer of lactate: one, saturable, with a Vmax of 0.84 mumol.min-1.g-1 and an apparent Km of 21 mM was sensitive to SITS, CIN, and a thiol group reagent; the other was non-saturable and insensitive to SITS and CIN with an apparent rate constant of 0.1 min-1.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4-Chloromercuribenzenesulfonate; Amiloride; Animals; Carrier Proteins; Cinnamates; Coumaric Acids; Female; Hydrogen-Ion Concentration; Lactates; Lactic Acid; Monocarboxylic Acid Transporters; Muscles; Perfusion; Rats; Rats, Inbred Strains

1988