Page last updated: 2024-08-21

4,6-dinitro-o-cresol and flavin-adenine dinucleotide

4,6-dinitro-o-cresol has been researched along with flavin-adenine dinucleotide in 29 studies

Research

Studies (29)

TimeframeStudies, this research(%)All Research%
pre-199012 (41.38)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's6 (20.69)24.3611
2020's11 (37.93)2.80

Authors

AuthorsStudies
ANDO, M; MURAMATSU, T; NAGATSU, T1
TETHER, LR; TURNBULL, JH1
BUZARD, JA; KOPKO, F1
BRAGANCA, BM; KENKARE, UW1
FAZEKAS, A; KOKAY, K; KOVACS, E; MAZAREAN, H1
MASSEY, V; SWOBODA, BE1
KANIUGA, Z; VEEGER, C1
GIUDITTA, A1
OZAWA, T; YAGI, K1
GARDAS, A; KANIUGA, Z; RAFALOWSKA, U; ZAGORSKI, W1
IMAI, K; KATAGIRI, H; YAMADA, H1
COMLINE, RS1
Meints, CE; Simtchouk, S; Wolthers, KR1
Aprodu, I; Dumitrașcu, L; Stănciuc, N1
Rawat, R; Roje, S; Sa, N; Thornburg, C; Walker, KD1
Lynch, JH; Raffaelli, N; Roje, S; Sa, N; Saeheng, S1
Al-Ubaidi, MR; Du, J; Makia, M; Naash, MI; Sinha, T1
Frolova, MS; Marchenkov, VV; Vekshin, NL1
Fleming, GR; Haddad, AZ; Oldemeyer, S1
Brockley, M; Cherry, S; Giddings, LA; Kim, KW; Lountos, GT; Needle, D; Tropea, JE; Waugh, DS1
Schnerwitzki, D; Vabulas, RM1
Ahn, KH; Bhuniya, S; Biswas, S; Demina, TS; Sarkar, S; Shil, A1
Aleksandrov, A; Liebl, U; Ramodiharilafy, R; Vos, MH; Zhuang, B1
Barnard, DT; Byrne, MC; Jacoby Morris, K; McBride, RA; Narayanan, M; Singh, VR; Stanley, RJ1
Chen, X; Deng, Y; Wu, Y; Zhong, F; Zhou, Q1
Ghosh, S; Puranik, M1
De, BC; Huang, C; Jiang, X; Liu, W; Yang, C; Zhang, C; Zhang, L; Zhang, W; Zhao, M; Zhu, Y1
Barnard, DT; Harun-Or-Rashid, M; Jacoby-Morris, K; McBride, RA; Stanley, RJ1
González-Viegas, M; Kar, RK; Miller, AF; Mroginski, MA1

Reviews

1 review(s) available for 4,6-dinitro-o-cresol and flavin-adenine dinucleotide

ArticleYear
Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis.
    International journal of molecular sciences, 2022, Feb-27, Volume: 23, Issue:5

    Topics: Biological Products; Cytochrome P-450 Enzyme System; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Oxygenases

2022

Other Studies

28 other study(ies) available for 4,6-dinitro-o-cresol and flavin-adenine dinucleotide

ArticleYear
Effects of flavin monosulphate and flavin adenine dinucleotide on the electroencephalogram.
    Nature, 1958, Aug-16, Volume: 182, Issue:4633

    Topics: Coenzymes; Dinitrocresols; Electroencephalography; Flavin-Adenine Dinucleotide; Flavins; Humans; Organic Chemicals; Riboflavin

1958
Excited states of flavin coenzymes. Influence of structural factors on the reactivity of excited flavins.
    The Biochemical journal, 1962, Volume: 85

    Topics: Coenzymes; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Riboflavin

1962
The flavin requirement and some inhibition characteristics of rat tissue glutathione reductase.
    The Journal of biological chemistry, 1963, Volume: 238

    Topics: Animals; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Glutathione Reductase; Oxidoreductases; Rats

1963
Flavin requirement and partial separation of enzymes catalysing the reduction of folic acid to tetrahydrofolic acid in liver.
    The Biochemical journal, 1963, Volume: 86

    Topics: Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Folic Acid; Humans; Liver; Oxidoreductases; Riboflavin; Tetrahydrofolates

1963
[A method for the production of flavin-adenine-dinucleotid in the laboratory].
    Kiserletes orvostudomany, 1963, Volume: 15

    Topics: Adenine; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Laboratories

1963
THE FLAVIN COMPOSITION OF PIG HEART MUSCLE PREPARATIONS.
    Biochemische Zeitschrift, 1963, Volume: 338

    Topics: Animals; Biochemical Phenomena; Biochemistry; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Myocardium; Organic Chemicals; Research; Swine

1963
THE FLAVIN COMPONENTS OF THE NADH DEHYDROGENASE OF THE RESPIRATORY CHAIN.
    Biochimica et biophysica acta, 1963, Oct-01, Volume: 77

    Topics: Dinitrocresols; Electron Transport; Electron Transport Complex IV; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Metabolism; Mitochondria; NAD; NADH Dehydrogenase; Oxidoreductases; Peptide Hydrolases; Research; Riboflavin; Spectrophotometry

1963
[EFFECT OF BARBITURATES ON THE NON-ENZYMATIC OXIDATION OF NADH CATALYZED BY IRRADIATED FLAVIN].
    Bollettino della Societa italiana di biologia sperimentale, 1963, Dec-31, Volume: 39

    Topics: Barbiturates; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; NAD; NADP; Oxidation-Reduction; Pharmacology; Phenobarbital; Ultraviolet Rays

1963
FLAVIN CONTENT OF D-AMINO ACID OXIDASE.
    Biochimica et biophysica acta, 1964, Mar-09, Volume: 81

    Topics: Amino Acid Oxidoreductases; Amino Acids; D-Amino-Acid Oxidase; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Organic Chemicals; Research; Spectrophotometry

1964
THE FLAVIN COMPOSITION IN SUBFRACTIONS OF PIG- AND BEEF-HEART-MUSCLE PREPARATIONS.
    Biochimica et biophysica acta, 1965, Feb-15, Volume: 97

    Topics: Animals; Cattle; Chemical Precipitation; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Fluorometry; Muscles; Myocardium; Photometry; Research; Riboflavin; Spectrophotometry; Swine

1965
Biosynthesis of flavin coenzymes by microorganisms. II. Enzymic synthesis of flavin-adenine dinucleotide by Escherichia coli.
    The Journal of vitaminology, 1959, Dec-10, Volume: 5

    Topics: Biochemical Phenomena; Coenzymes; Dinitrocresols; Escherichia coli; Flavin-Adenine Dinucleotide; Flavins; Organic Chemicals

1959
Effect of flavine-adeninedinucleotide and other substances on the synthesis of acetylcholine.
    The Journal of physiology, 1947, Volume: 105, Issue:4

    Topics: Acetylcholine; Adenine; Choline; Dinitrocresols; Flavin-Adenine Dinucleotide; Nucleotides

1947
Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    The FEBS journal, 2013, Volume: 280, Issue:6

    Topics: Amino Acid Substitution; Amino Acids, Aromatic; Catalysis; Cytochrome c Group; Dinitrocresols; Electron Transport; Escherichia coli; Ferredoxin-NADP Reductase; Flavin-Adenine Dinucleotide; Kinetics; Mutagenesis, Site-Directed; NADP; NADPH-Ferrihemoprotein Reductase; Oxidation-Reduction; Plasmids; Protein Structure, Tertiary; Recombinant Proteins; Thermodynamics; Titrimetry; Tryptophan

2013
New insights into xanthine oxidase behavior upon heating using spectroscopy and in silico approach.
    International journal of biological macromolecules, 2016, Volume: 88

    Topics: Animals; Cattle; Circular Dichroism; Dinitrocresols; Flavin-Adenine Dinucleotide; Hot Temperature; Milk; Molecular Dynamics Simulation; Protein Conformation; Protein Multimerization; Protein Subunits; Spectrometry, Fluorescence; Tryptophan; Tyrosine; Xanthine Oxidase

2016
Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana.
    The Plant journal : for cell and molecular biology, 2016, Volume: 88, Issue:5

    Topics: Arabidopsis; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Hydrolases; Riboflavin; Uracil Nucleotides

2016
Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae.
    PloS one, 2018, Volume: 13, Issue:6

    Topics: Adenosine Diphosphate Ribose; Cations; Cytosol; Dinitrocresols; Flavin-Adenine Dinucleotide; Hydrogen-Ion Concentration; Mitochondria; NAD; Potassium; Pyrophosphatases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins

2018
Flavin homeostasis in the mouse retina during aging and degeneration.
    The Journal of nutritional biochemistry, 2018, Volume: 62

    Topics: Aging; Animals; Chromatography, High Pressure Liquid; Dinitrocresols; Fasting; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Homeostasis; Light; Mice, Inbred C57BL; Retina; Retinal Degeneration; Retinal Pigment Epithelium

2018
Disruption of flavin homeostasis in isolated rat liver mitochondria.
    Biochemical and biophysical research communications, 2019, 09-03, Volume: 516, Issue:4

    Topics: Adenine Nucleotides; Animals; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Guanine Nucleotides; Homeostasis; Hydrolysis; Ions; Iron; Luminescence; Mitochondria, Liver; Niacinamide; Rats; Rats, Wistar; Riboflavin; Superoxides

2019
Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome.
    Biochemistry, 2020, 02-04, Volume: 59, Issue:4

    Topics: Chlamydomonas; Chlamydomonas reinhardtii; Color; Cryptochromes; Deoxyribodipyrimidine Photo-Lyase; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Light; Riboflavin; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared

2020
Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus.
    PloS one, 2021, Volume: 16, Issue:3

    Topics: Bacterial Proteins; Biocatalysis; Cadaverine; Catalytic Domain; Deferoxamine; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavins; Holoenzymes; Hydroxylation; Kinetics; Mixed Function Oxygenases; NADP; Ornithine; Oxidation-Reduction; Siderophores; Streptomyces

2021
Dynamic association of flavin cofactors to regulate flavoprotein function.
    IUBMB life, 2022, Volume: 74, Issue:7

    Topics: Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Flavoproteins; Oxidation-Reduction

2022
A π-Stacking Based Fluorescent Probe for Labeling of Flavin Analogues in Live Cells through Unusual FRET Process.
    Analytical chemistry, 2022, 03-01, Volume: 94, Issue:8

    Topics: Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Fluorescence Resonance Energy Transfer; Fluorescent Dyes

2022
Ultrafast photooxidation of protein-bound anionic flavin radicals.
    Proceedings of the National Academy of Sciences of the United States of America, 2022, 02-22, Volume: 119, Issue:8

    Topics: Anions; Catalytic Domain; Dinitrocresols; Electron Transport; Flavin-Adenine Dinucleotide; Flavins; Flavoproteins; Kinetics; Light; Models, Molecular; Molecular Dynamics Simulation; Oxidation-Reduction; Oxidoreductases; Spectrophotometry

2022
Comparing ultrafast excited state quenching of flavin 1,N
    Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2022, Volume: 21, Issue:6

    Topics: Adenine; Density Functional Theory; Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Spectrometry, Fluorescence

2022
Initial Excited State Dynamics of Lumichrome upon Ultraviolet Excitation.
    Photochemistry and photobiology, 2022, Volume: 98, Issue:6

    Topics: Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Organic Chemicals; Riboflavin; Solvents

2022
Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation.
    Nature communications, 2022, 09-14, Volume: 13, Issue:1

    Topics: Catalysis; Dinitrocresols; Flavin-Adenine Dinucleotide; Flavoproteins; Isoquinolines; Mixed Function Oxygenases; Naphthoquinones; Organic Chemicals; Xanthones

2022
Reduced Flavin in Aqueous Solution Is Nonfluorescent.
    Biochemistry, 2023, 02-07, Volume: 62, Issue:3

    Topics: Electron Transport; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Organic Chemicals; Oxidation-Reduction; Riboflavin

2023
Noncovalent interactions that tune the reactivities of the flavins in bifurcating electron transferring flavoprotein.
    The Journal of biological chemistry, 2023, Volume: 299, Issue:6

    Topics: Electron Transport; Electron-Transferring Flavoproteins; Flavin-Adenine Dinucleotide; Flavins; Flavoproteins; Oxidation-Reduction

2023