4-4-difluoro-4-bora-3a-4a-diaza-s-indacene and benzimidazole

4-4-difluoro-4-bora-3a-4a-diaza-s-indacene has been researched along with benzimidazole* in 2 studies

Other Studies

2 other study(ies) available for 4-4-difluoro-4-bora-3a-4a-diaza-s-indacene and benzimidazole

ArticleYear
Boron-dipyrromethene based reversible and reusable selective chemosensor for fluoride detection.
    Inorganic chemistry, 2014, Feb-03, Volume: 53, Issue:3

    We synthesized benzimidazole substituted boron-dipyrromethene 1 (BODIPY 1) by treating 3,5-diformyl BODIPY 2 with o-phenylenediamine under mild acid catalyzed conditions and characterized by using various spectroscopic techniques. The X-ray structure analysis revealed that the benzimidazole NH group is involved in intramolecular hydrogen bonding with fluoride atoms which resulted in a coplanar geometry between BODIPY and benzimidazole moiety. The presence of benzimidazole moiety at 3-position of BODIPY siginificantly altered the electronic properties, which is clearly evident in bathochromic shifts of absorption and fluorescence bands, improved quantum yields, increased lifetimes compared to BODIPY 2. The anion binding studies indicated that BODIPY 1 showed remarkable selectivity and specificity toward F(-) ion over other anions. Addition of F(-) ion to BODIPY 1 resulted in quenching of fluorescence accompanied by a visual detectable color change from fluorescent pink to nonfluorescent blue. The recognition mechanism is attributed to a fluoride-triggered disruption of the hydrogen bonding between BODIPY and benzimidazole moieties leading to (i) noncoplanar geometry between BODIPY and benzimidazole units and (ii) operation of photoinduced electron transfer (PET) from benzimidazole moiety to BODIPY unit causing quenching of fluorescence. Interestingly, when we titrated the nonfluorescent blue 1-F(-) solution with TFA resulted in a significant enhancement of fluorescence intensity (15-fold) because the PET quenching is prevented due to protonation of benzimidazole group. Furthermore, the reversibility and reusability of sensor 1 for the detection of F(-) ion was tested for six cycles indicating the sensor 1 is stable and can be used in reversible manner.

    Topics: Benzimidazoles; Boron; Boron Compounds; Crystallography, X-Ray; Fluorescent Dyes; Fluorides; Models, Molecular; Phenylenediamines; Porphobilinogen; Spectrometry, Fluorescence

2014
Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY.
    Inorganic chemistry, 2013, Oct-07, Volume: 52, Issue:19

    A multisignaling Hg(II) sensor based on a benzimidazole substituted BODIPY framework was designed, which displays excellent selectively toward Hg(II) in vitro and in vivo. Optical and fluorogenic measurements in solution reveal that the sensor can detect mercury ions at submicromolar concentrations, with high specificity. The detection of Hg(II) is associated with a blue-shift in optical spectra and a simultaneous increase in the fluorescence quantum yield of the sensor, which is attributed to a decrease in charge delocalization and inhibition of photoinduced electron transfer upon binding to Hg(II). Using several spectroscopic measurements, it is shown that the binding mechanism involves two sensor molecules, where lone pairs of the benzimidazole nitrogen coordinate to a single mercury ion. The utility of this BODIPY sensor to detect Hg(II) in vivo was demonstrated by fluorescence imaging and spectroscopy of labeled human breast adenocarcinoma cells. While average emission intensity of the sensor over a large number of cells increases with incubated mercury concentrations, spatially resolved fluorescence spectroscopy performed on individual cells reveals clear spectral blue-shifts from a subensemble of sensors, corroborating the detection of Hg(II). Interestingly, the emission spectra at various submicrometer locations within cells exhibited considerable inhomogeneity in the extent of blue-shift, which demonstrates the potential of this sensor to monitor the local (effective) concentration of mercury ions within various subcellular environments.

    Topics: Benzimidazoles; Boron Compounds; Breast Neoplasms; Cell Line, Tumor; Female; Fluorescent Dyes; Humans; Magnetic Resonance Spectroscopy; Mercuric Chloride; Optical Imaging

2013