4-4--dinitro-2-2--stilbenedisulfonic-acid has been researched along with benzoylamido-4--aminostilbene-2-2--disulfonate* in 2 studies
2 other study(ies) available for 4-4--dinitro-2-2--stilbenedisulfonic-acid and benzoylamido-4--aminostilbene-2-2--disulfonate
Article | Year |
---|---|
Self-association of Band 3, the human erythrocyte anion exchanger, in detergent solution.
Dimeric Band 3 purified in n-dodecyl octaethyleneglycol (C12E8) underwent an irreversible, temperature-dependent association, resulting in a complex with a Stokes radius slightly larger than a native tetramer, before forming a higher molecular weight aggregate. Self-association occurred with a half-time of about 1 h at 37 degrees C but did not occur at 0 degrees C after several days. No change in the secondary structure of Band 3, as observed by circular dichroism, occurred during the association process. However, self-association of Band 3 was accompanied by loss of the stilbene disulfonate inhibitor binding site. No association or loss of inhibitor binding occurred with the dimeric membrane domain under similar incubation conditions. The membrane domain dimer was also stable over a wide range of pH (5.5-9.5) and buffer conditions, while Band 3 aggregated below pH 6.5. Inhibitors of anion transport, which stabilize the membrane domain, slowed the association. Band 3, depleted of phospholipids by extensive washing of resin-bound protein with detergent or, incubated with excess detergent, was more prone to aggregation. The membrane domain also showed some aggregation when depleted of lipids. Preparations could be stabilized by adding dimyristoylphosphatidylcholine (DMPC) prior to the 37 degrees C incubation. The effect of inhibitors and DMPC was additive, with a combination of 1 mM 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) and 1:1 (wt/wt) DMPC:Band 3 stabilizing 90% of the protein to a 24-h incubation at 37 degrees C. The results suggest that self-association of Band 3 dimers is promoted by the cytoplasmic domain but results in alterations to the membrane domain involving the loss of essential phospholipids. Addition of phospholipid or inhibitors to Band 3 results in a stable preparation of the intact protein that may be suitable for crystallization studies. Topics: Anion Exchange Protein 1, Erythrocyte; Chromatography, Gel; Chromatography, High Pressure Liquid; Detergents; Dimerization; Dimyristoylphosphatidylcholine; Erythrocyte Membrane; Humans; Hydrogen-Ion Concentration; Protein Structure, Secondary; Stilbenes; Temperature; Time Factors | 1997 |
The mechanisms of inhibition of anion exchange in human erythrocytes by 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Anion Exchange Protein 1, Erythrocyte; Anions; Carbodiimides; Citrates; Erythrocyte Membrane; Ethyldimethylaminopropyl Carbodiimide; Humans; In Vitro Techniques; Ion Channels; Stilbenes | 1988 |