4-4--dinitro-2-2--stilbenedisulfonic-acid has been researched along with 4-4--dibenzamido-2-2--stilbenedisulfonic-acid* in 3 studies
3 other study(ies) available for 4-4--dinitro-2-2--stilbenedisulfonic-acid and 4-4--dibenzamido-2-2--stilbenedisulfonic-acid
Article | Year |
---|---|
Three different actions of phenylglyoxal on band 3 protein-mediated anion transport across the red blood cell membrane.
Phenylglyoxalation of the red blood cell membrane leads to three superimposed effects on band 3 protein-mediated anion equilibrium exchange as measured by means of radiosulfate: (1) a shift of the curve relating transport activity to pH towards lower pH values, possibly in combination with an increase of the maximal transport activity. This is accompanied by effect (2), the abolishment of a chloride-stimulated component of anion transport seen at low pH values. Effect (3) consists of inhibition of anion equilibrium exchange. Effect (1) prevails when phenylglyoxalation is performed at low concentrations of PG and low pH, while effect (3) predominates when exposure to PG is executed at high pH and high concentration of PG. Effect (1) is associated with a decrease of the Ki values for inhibition and binding of the reversibly acting stilbene disulfonates DNDS and DBDS. The inhibition observed as a consequence of effect (3) is linearly related to a decrease of the capacity of band 3 to combine with the stilbene disulfonate DBDS. The results are interpreted on the assumption that PG is capable of reacting with two or possibly three distinct binding sites in band 3. Reaction with one of them leads to effect (1) and, perhaps, to effect (2); reaction with the other to effect (3). The latter is possibly due to modification of Arg 730, which is homologous to Arg 748 in mouse band 3. Site-directed mutagenesis of this arginine residue showed that it is required for band 3-mediated anion transport. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; Anion Exchange Protein 1, Erythrocyte; Anions; Arginine; Binding Sites; Biological Transport; Chlorides; Erythrocyte Membrane; Humans; Hydrogen-Ion Concentration; Kinetics; Phenylglyoxal; Stilbenes; Sulfates | 1997 |
Kinetic evidence for ternary complex formation and allosteric interactions in chloride and stilbenedisulfonate binding to band 3.
The molecular basis for chloride and stilbenedisulfonate interaction with band 3 was investigated by measuring the kinetics of stilbenedisulfonate release from its complex with the transporter. We found that 150 mM NaCl accelerated the rate of release of DBDS (4,4'-dibenzamidostilbene-2,2'-dibenzamidostilbene-2,2'-disu lfonate) and H2DIDS (4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate) by more than 10-fold at constant ionic strength. The acceleration effect saturated as a function of chloride concentration. This is an indication of specific binding within a ternary complex involving stilbenedisulfonate, chloride, and band 3. To see if stilbenedisulfonates block an access channel to the transport site, we studied the effect of rapidly mixing DBDS-saturated resealed ghosts with chloride at constant ionic strength and osmotic pressure. Once again, we observe a large, uniform acceleration in the rate of DBDS release. These findings are not consistent with molecular models where stilbenedisulfonates are proposed to block access to a deeper transport site. We suggest that the intramonomeric stilbenedisulfonate site is not located on the chloride transport pathway but rather interacts with the transport site though heterotropic allosteric site-site interactions. On the basis of our kinetic evidence for ternary complex formation and on transport inhibition evidence in the literature showing a linear dependence of KI-app on substrate, we suggest that stilbenedisulfonates are linear mixed-type inhibitors of band 3 anion exchange, not pure competitive inhibitors as has been assumed on the basis of analysis of transport inhibition data alone. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Allosteric Regulation; Anion Exchange Protein 1, Erythrocyte; Binding Sites; Chlorides; Erythrocyte Membrane; Flow Injection Analysis; Fluorometry; Humans; Kinetics; Models, Chemical; Stilbenes | 1994 |
Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein.
The inhibition of inorganic anion transport by dipyridamole (2,6-bis(diethanolamino)-4,8-dipiperidinopyrimido[5,4-d] pyrimidine) takes place only in the presence of Cl-, other halides, nitrate or bicarbonate. At any given dipyridamole concentration, the anion flux relative to the flux in the absence of dipyridamole follows the equation: Jrel = (1 + alpha 2[Cl-])/(1 + alpha 4[Cl-]) where alpha 2 and alpha 4 are independent of [Cl-] but dependent on dipyridamole concentration. At high [Cl-] the flux approaches alpha 2/alpha 4, which decreases with increasing dipyridamole concentration. Even when both [Cl-] and dipyridamole concentration assume large values, a small residual flux remains. The equation can be deduced on the assumption that Cl- binding allosterically increases the affinity for dipyridamole binding to band 3 and that the bound dipyridamole produces a non-competitive inhibition of sulfate transport. The mass-law constants for the binding of Cl- and dipyridamole to their respective-binding sites are about 24 mM and 1.5 microM, respectively (pH 6.9, 26 degrees C). Dipyridamole binding leads to a displacement of 4,4'-dibenzoylstilbene-2,2'-disulfonate (DBDS) from the stilbenedisulfonate binding site of band 3. The effect can be predicted quantitatively on the assumption that the Cl- -promoted dipyridamole binding leads to a competitive replacement of the stilbenedisulfonates. For the calculations, the same mass-law constants for binding of Cl- and dipyridamole can be used that were derived from the kinetic studies on Cl- -promoted anion transport inhibition. The newly described Cl- binding site is highly selective with respect to Cl- and other monovalent anion species. There is little competition with SO4(2-), indicating that Cl- binding involves other than purely electrostative forces. The affinity of the binding site to Cl- does not change over the pH range 6.0-7.5. Dipyridamole binds only in its deprotonated state. Binding of the deprotonated dipyridamole is pH-independent over the same range as Cl- binding. Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Allosteric Site; Anion Exchange Protein 1, Erythrocyte; Anions; Binding Sites; Binding, Competitive; Biological Transport; Chlorides; Dipyridamole; Erythrocyte Membrane; Humans; Hydrogen-Ion Concentration; Mathematics; Phosphates; Stilbenes; Sulfates | 1989 |