4--7-8-trihydroxyisoflavone has been researched along with daidzein* in 6 studies
1 review(s) available for 4--7-8-trihydroxyisoflavone and daidzein
Article | Year |
---|---|
Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein.
Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD) and ortho-hydroxygenistein (OHG), including 6-hydroxydaidzein (6-OHD), 8-hydroxydaidzein (8-OHD), 3'-hydroxydaidzein (3'-OHD), 6-hydroxygenistein (6-OHG), 8-hydroxygenistein (8-OHG), and 3'-hydroxygenistein (3'-OHG), are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP) enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed. Topics: Aspergillus; Cytochrome P-450 Enzyme System; Genistein; Glycine max; Isoflavones; Neoplasms; Soy Foods | 2014 |
5 other study(ies) available for 4--7-8-trihydroxyisoflavone and daidzein
Article | Year |
---|---|
The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin.
In this study, we tested 15 naturally occurring isoflavones and their metabolites for their possible antibacterial properties against nine Gram-positive and Gram-negative bacteria. The in vitro antibacterial activity was determined using the broth microdilution method, and the results were expressed as minimum inhibitory concentrations (MICs). 6,7,4'-trihydroxyisoflavone (demethyltexasin), 7,3',4'-trihydroxyisoflavone (hydroxydaidzein), 5,7-dihydroxy-4'-methoxyisoflavone (biochanin A), 7,8,4'-trihydroxyisoflavone (demethylretusin) and 5,7,4'-trihydroxyisoflavone (genistein) produced significant antibacterial activity (MICs ≥ 16 μg ml(-1)). The most effective compound, demethyltexasin, was subsequently tested for its growth-inhibitory effect against Staphylococcus aureus, and it exhibited significant antistaphylococcal effects against various standard strains and clinical isolates, including methicillin and tetracycline resistant ones with the MICs ranging from 16 to 128 μg ml(-1).. The results of the structure-activity relationship (SAR) analysis identified ortho-dihydroxyisoflavones as a class of antibacterially effective compounds emphasizing the hydroxyl groups at C-5, 6 and 7 positions as crucial supposition for the antibacterial action of plant isoflavones and their metabolites. Demethyltexasin, an isoflavones' metabolite present in the human body through enterohepatic recycling of soya bean isoflavones (daidzein, genistein), showed the most potent antibacterial activity, especially against various strains of Staphylococcus aureus (including MDR and MRSA). The significance of this study is a deepening of the knowledge on isoflavones' SAR and identification of the antistaphylococcal activity of demethyltexasin, which suggest that metabolites of isoflavones can be even more potent antibacterial agents than their precursors. Topics: Anti-Bacterial Agents; Genistein; Gram-Negative Bacteria; Humans; Isoflavones; Methicillin; Microbial Sensitivity Tests; Plant Extracts; Staphylococcus aureus; Structure-Activity Relationship | 2015 |
Oxidative metabolism enhances the cytotoxic and genotoxic properties of the soy isoflavone daidzein.
Oxidative metabolism of daidzein (DAI) might result in the formation of hydroxylated metabolites. Here, we address the question whether these metabolites differ in their biological activity from the parent isoflavone, exemplified for the epidermal growth factor receptor and topoisomerase II, potentially resulting in an enhanced toxic profile.. In contrast to DAI, 6-hydroxydaidzein (6-HO-DAI) and 8-hydroxydaidzein (8-HO-DAI) were found to inhibit the tyrosine kinase activity of the epidermal growth factor receptor in an ELISA-based test system, but showed no effects within cells. Further, the oxidative metabolites suppressed the catalytic activity of topoisomerase II in the decatenation assay. In the in vivo complexes of enzyme to DNA (ICE) bioassay, 6-HO-DAI and 8-HO-DAI did not affect the level of covalent topoisomerase II-DNA intermediates within HT29 cells, thus arguing for a catalytic inhibition of topoisomerase II rather than poisoning activity. In contrast to DAI, 6-HO-DAI and 8-HO-DAI significantly increased the rate of DNA strand breaks in HT29 cells after 24-h incubation and caused a cell cycle delay in S-phase. Differences were also observed between the oxidative metabolites, with only 6-HO-DAI inducing apoptosis but not 8-HO-DAI.. These data indicate that oxidative metabolism of DAI generates metabolites with genotoxic properties where interference with topoisomerase II might play a role. Topics: Apoptosis; Cell Cycle; Comet Assay; DNA Damage; DNA Topoisomerases, Type II; Glycine max; HT29 Cells; Humans; Isoflavones; Oxidative Stress; Protein-Tyrosine Kinases; Topoisomerase II Inhibitors | 2014 |
Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247.
Aspergillus oryzae KACC 40247 was selected from among 60 fungal strains as an effective 7,8,4'-trihydroxyisoflavone (8-hydroxydaidzein)-producing fungus. The optimal culture conditions for production by this strain in a 7-L fermentor were found to be 30 °C, pH 6, and 300 rpm. Under these conditions, A. oryzae KACC 40247 produced 62 mg/L of 8-hydroxydaidzein from soybean extract in 30 h, with a productivity of 2.1 mg/L/h. These are the highest production and productivity for 8-hydroxydaidzein ever reported. To increase production, several concentrations of daidzin and of daidzein as precursor were added at several culture times. The optimal addition time and concentration for daidzin were 12 h and 1,248 mg/L, and those for daidzein were 12 h and 254 mg/L respectively. Maximum production and productivity for 8-hydroxydaidzein with the addition of daidzein were 95 mg/L and 3.2 mg/L/h respectively, and those with the addition of daidzin were 160 mg/L and 4.4 mg/L/h respectively. Topics: Aspergillus oryzae; Culture Media; Fermentation; Glycine max; Isoflavones | 2013 |
Metabolism of the soy isoflavones daidzein and genistein by fungi used in the preparation of various fermented soybean foods.
The ability of fungi used in the preparation of fermented soybean foods to metabolize the soy isoflavones daidzein and genistein was investigated. A total of 21 fungal strains from dou-chi, miso, sake, soy sauce, and sufu were screened. The genera of the tested fungi included Actinomucor, Aspergillus, Candida, Debaryomyces, Monascus, Mucor, Rhizopus, Saccharomyces, and Zygosaccharomyces. The results were that all tested Aspergillus strains from these soybean foods, including five A. oryzae strains, one A. sojae strain, and one A. tamarii strain, metabolized both daidzein and genistein. In contrast, no other tested fungi from the fermented soybean foods metabolized either daidzein or genistein. The metabolites of daidzein and genistein by Aspergillus strains were identified as 8-hydroxydaidzein and 8-hydroxygenistein, respectively, based on their mass, (1)H-, and (13)C-NMR spectra. Topics: Aspergillus; Fermentation; Genistein; Glycine max; Isoflavones; Molecular Structure; Molecular Weight; Nuclear Magnetic Resonance, Biomolecular; Soy Foods | 2007 |
Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay.
Anti-angiogenic strategies are emerging as an important tool for the treatment of cancer and inflammatory diseases. In the present investigation we isolated several isoflavones from a tempeh (fermented soyabean) extract. The isolated isoflavones were identified as 5,7,4'-trihydroxyisoflavone (genistein), 7,4'-dihydroxyisoflavone (daidzein), 6,7,4'-trihydroxyisoflavone (factor 2), 7,8,4'-trihydroxyisoflavone (7,8,4'-TriOH) and 5,7,3',4'-tetrahydroxyisoflavone (orobol). The effects on angiogenesis of these isoflavones were evaluated in the chicken chorioallantoic membrane assay; their capacity to inhibit vascular endothelial growth factor-induced endothelial cell proliferation and expression of the Ets 1 transcription factor, known to be implicated in the regulation of new blood vessel formation, were also investigated. We found that all isoflavones inhibited angiogenesis, albeit with different potencies. Compared with negative controls, which slightly inhibited in vivo angiogenesis by 6.30 %, genistein reduced angiogenesis by 75.09 %, followed by orobol (67.96 %), factor 2 (56.77 %), daidzein (48.98 %) and 7,8,4'-TriOH (24.42 %). These compounds also inhibited endothelial cell proliferation, with orobol causing the greatest inhibition at lower concentrations. The isoflavones also inhibited Ets 1 expression, providing some insight into the molecular mechanisms of their action. Furthermore, the chemical structure of the different isoflavones suggests a structure-activity relationship. Our present findings suggest that the new isoflavones might be added to the list of low molecular mass therapeutic agents for the inhibition of angiogenesis. Topics: Angiogenesis Inhibitors; Animals; Cell Proliferation; Chick Embryo; Chorioallantoic Membrane; Endothelium, Vascular; Genistein; Humans; Isoflavones; Neovascularization, Pathologic; Proto-Oncogene Protein c-ets-1; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-ets; Soy Foods; Structure-Activity Relationship; Transcription Factors; Vascular Endothelial Growth Factor A | 2005 |