4-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-n-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide and phenylalanine-arginine-beta-naphthylamide

4-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-n-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide has been researched along with phenylalanine-arginine-beta-naphthylamide* in 1 studies

Other Studies

1 other study(ies) available for 4-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-n-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide and phenylalanine-arginine-beta-naphthylamide

ArticleYear
4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth.
    Journal of medicinal chemistry, 2014, Feb-13, Volume: 57, Issue:3

    4'-Phosphopantetheinyl transferases (PPTases) catalyze a post-translational modification essential to bacterial cell viability and virulence. We present the discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)piperazine-1-carbothioamides, which exhibit submicromolar inhibition of bacterial Sfp-PPTase with no activity toward the human orthologue. Moreover, compounds within this class possess antibacterial activity in the absence of a rapid cytotoxic response in human cells. An advanced analogue of this series, ML267 (55), was found to attenuate production of an Sfp-PPTase-dependent metabolite when applied to Bacillus subtilis at sublethal doses. Additional testing revealed antibacterial activity against methicillin-resistant Staphylococcus aureus , and chemical genetic studies implicated efflux as a mechanism for resistance in Escherichia coli . Additionally, we highlight the in vitro absorption, distribution, metabolism, and excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule inhibitor.

    Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Dipeptides; Drug Resistance, Bacterial; Drug Synergism; Escherichia coli; Gram-Positive Bacteria; Humans; Male; Mice; Microbial Sensitivity Tests; Microsomes, Liver; Pyridines; Secondary Metabolism; Structure-Activity Relationship; Thiourea; Transferases (Other Substituted Phosphate Groups)

2014