3-octanone has been researched along with 1-octen-3-ol* in 12 studies
12 other study(ies) available for 3-octanone and 1-octen-3-ol
Article | Year |
---|---|
Fungal volatile organic compounds show promise as potent molluscicides.
Slugs and snails constitute major crop pests. Withdrawal of metaldehyde has prompted a search for more environmentally friendly yet fast acting molluscicides. This study investigated the response of representative molluscs to conidia and volatile organic compounds (VOCs) of the insect pathogenic fungus Metarhizium brunneum Petch.. Conidia of M. brunneum had antifeedant/repellent properties with repellency being dependent upon the fungal strain and conidia concentration. Three commonly produced fungal VOCs, 1-octene, 3-octanone and 1-octen-3-ol, were repellent at low doses (1-5 μL) but could kill slugs and snails on contact or fumigation. At the highest dose tested (10 μL), 100% mortality was achieved for Cornu aspersum Muller (garden snail) and Derocerus reticulatum Muller (grey field slug) within 1 h post-treatment with the first deaths being recorded in <11 min. Aqueous formulations (20% v/v) of the most potent VOCs, 3-octanone and 1-octen-3-ol, could be sprayed onto plants to kill or drive the pest of the crop with no phytotoxic effects.. The sensitivity of terrestrial molluscs to 3-octanone and 1-octen-3-ol and the ephemeral nature of these compounds makes these excellent candidates for development as mollusc repellents or molluscicides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Topics: Alkenes; Animals; Dose-Response Relationship, Drug; Gastropoda; Helix, Snails; Ketones; Metarhizium; Molluscacides; Octanols; Pest Control; Spores, Fungal; Volatile Organic Compounds | 2019 |
Transport of hop aroma compounds across Caco-2 monolayers.
Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying Caco-2 transport experiments as well as investigations on potential biotransformation processes. Selective and sensitive identification and quantification were thereby achieved by application of two-dimensional high resolution gas chromatography-mass spectrometry in conjunction with stable isotope dilution analysis, leading to the determination of apparent permeability values by different mathematical approaches considering sink and non-sink conditions. Overall, calculated permeability values ranged from 2.6 × 10(-6) to 1.8 × 10(-4) cm s(-1) with all mathematical approaches, indicating high absorption potential and almost complete bioavailability for all tested compounds with hydroxyl-functionalities. Considering this high permeability together with the high lipophilicity of these substances, a passive transcellular uptake route can be speculated. Investigated sesquiterpenes and β-myrcene showed flat absorption profiles while the investigated esters showed decreasing profiles. In view of the lipophilic and volatile nature of the investigated substances, special attention was paid to recovery and mass balance determination. Furthermore, in the course of the transport experiments of 1-octen-3-ol and 3-methyl-2-buten-1-ol, additional biotransformation products were observed, namely 3-octanone and 3-methyl-2-butenal, respectively. The absence of these additional substances in control experiments strongly indicates an intestinal first-pass metabolism of the α,β-unsaturated alcohols 1-octen-3-ol and 3-methyl-2-buten-1-ol in Caco-2 cells. Topics: Acyclic Monoterpenes; Aldehydes; Biological Availability; Biological Transport; Biotransformation; Caco-2 Cells; Cell Membrane Permeability; Gas Chromatography-Mass Spectrometry; Hemiterpenes; Humans; Humulus; Ketones; Monoterpenes; Octanols; Odorants; Pentanols; Volatile Organic Compounds | 2014 |
Chemical composition and aroma evaluation of volatile oils from edible mushrooms (Pleurotus salmoneostramineus and Pleurotus sajor-caju).
This study is focused on the volatile oils from the fruiting bodies of Pleurotus salmoneostramineus (PS) and P. sajor-caju (PSC), which was extracted by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) methods. The oils are analyzed by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). A total of 31, 31, 45, and 15 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), representing about 80.3%, 92.2%, 88.9%, and 83.0% of the oils, respectively. Regarding the aroma-active components, 13, 12, 13, and 5 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), respectively, by the GC-O analyses. The results of the sniffing test, odor activity value (OAV) and flavor dilution (FD) factor indicate that 1-octen-3-ol and 3-octanone are the main aroma-active components of PS oils. On the other hands, methional and 1-octen-3-ol were estimated as the main aroma-active components of PSC oils. Topics: Aldehydes; Distillation; Gas Chromatography-Mass Spectrometry; Indicator Dilution Techniques; Ketones; Octanols; Oils, Volatile; Olfactometry; Pleurotus; Solvents | 2014 |
Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?
A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans. Topics: Animals; Coffee; Edible Grain; Fabaceae; Gas Chromatography-Mass Spectrometry; Ketones; Methyl n-Butyl Ketone; Mites; Octanols; Solid Phase Microextraction; Volatile Organic Compounds | 2013 |
Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds.
A Penicillium polonicum, an Aspergillus ustus and a Periconia britannica strain were isolated from water-damaged environments and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction followed by GC-MS analysis. The most important MVOCs produced were 2-methylisoborneol, geosmin and daucane-type sesquiterpenes for P. polonicum, 1-octen-3-ol, 3-octanone, germacrene D, δ-cadinene and other sesquiterpenes for A. ustus and the volatile mycotoxin precursor aristolochene together with valencene, α-selinene and β-selinene for P. britannica. Different growth conditions (substrate, temperature, relative humidity) were selected, resembling indoor parameters, to investigate their influence on fungal metabolism in relation with the sick building syndrome and the results were compared with two other fungal strains previously analyzed under the same conditions. In general, the range of MVOCs and the emitted quantities were larger on malt extract agar than on wallpaper and plasterboard, but, overall, the main MVOC profile was conserved also on the two building materials tested. The influence of temperature and relative humidity on growth and metabolism is different for different fungal species, and two main patterns of behavior could be distinguished. Results show that, even at suboptimal conditions for growth, production of fungal volatiles can be significant. Topics: Analysis of Variance; Camphanes; Gas Chromatography-Mass Spectrometry; Housing; Humans; Humidity; Ketones; Mitosporic Fungi; Naphthols; Octanols; Sesquiterpenes; Sesquiterpenes, Germacrane; Sick Building Syndrome; Solid Phase Extraction; Species Specificity; Temperature; Volatile Organic Compounds | 2012 |
[Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].
To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures.. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds.. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture.. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different. Topics: Acetates; Antrodia; Culture Techniques; Ethanol; Gas Chromatography-Mass Spectrometry; Ketones; Mycelium; Octanols; Solid Phase Microextraction; Volatile Organic Compounds | 2011 |
Induction of conidiation by endogenous volatile compounds in Trichoderma spp.
Light and starvation are two principal environmental stimuli inducing conidiation in the soil micromycete Trichoderma spp. We observed that volatiles produced by conidiating colonies of Trichoderma spp. elicited conidiation in colonies that had not been induced previously by exposure to light. The inducing effect of volatiles was both intra- and interspecific. Chemical profiles of the volatile organic compounds (VOCs) produced by the nonconidiated colonies grown in the dark and by the conidiating colonies were compared using solid-phase microextraction of headspace samples followed by tandem GC-MS. The conidiation was accompanied by increased production of eight-carbon compounds 1-octen-3-ol and its analogs 3-octanol and 3-octanone. When vapors of these compounds were applied individually to dark-grown colonies, they elicited their conidiation already at submicromolar concentrations. It is concluded that the eight-carbon VOCs act as signaling molecules regulating development and mediating intercolony communication in Trichoderma. Topics: Chromatography, Gas; Darkness; Ketones; Octanols; Spores, Fungal; Trichoderma; Volatilization | 2008 |
A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity.
Mushrooms are very popular in the market for their nutritional and medicinal use. Mushroom volatiles are not only an important factor in the flavor, but also contain many antioxidant compounds. Antioxidant activity is a very important property for disease prevention. The volatile compositional characteristics of straw mushrooms (Volvariella volvacea [Bull. ex Fr.] Sing.) and oyster mushrooms (Pleurotus ostreatus [Jacq. ex Fr.] Kummer) during maturity and the mushroom antioxidant activity related to the non-volatiles and volatiles are studied by a chromatographic method in combination with a spectrophotometric method. The volatile compounds of straw and oyster mushrooms are sampled and identified by a combination sampling method, including headspace solid phase microextraction and steam distillation, followed by gas chromatography-mass spectrometry detection. Among all the volatile compounds identified, 1-octen-3-ol and 3-octanone are the two main compounds with the highest amounts in the volatile compositions of straw and oyster mushrooms. During maturity time of the straw mushrooms, the unsaturated 1-octen-3-ol peak area is reduced, whereas the saturated 3-octanone peak area is increased. However, during normal maturity time of oyster mushrooms, the peak areas of 1-octen-3-ol and 3-octanone remain at the same level. 1-Octen-3-ol has a different antioxidant activity from 3-octanone. Combining the results of antioxidant experiments of water extract and main volatile components by the use of a phosphomolybdenum spectrophotometric method, the conclusion is drawn that oyster mushrooms might possess stronger antioxidant activities than straw mushrooms. Topics: Agaricales; Antioxidants; Gas Chromatography-Mass Spectrometry; Ketones; Octanols; Organic Chemicals; Reference Standards; Species Specificity; Volatilization | 2008 |
Oviposition in Delia platura (Diptera, Anthomyiidae): the role of volatile and contact cues of bean.
The choice of a suitable oviposition site by female insects is essential for survival of their progeny. Both olfactory and contact cues of the oviposition site may mediate this choice. The polyphagous Delia platura (Diptera: Anthomyiidae), a severe agricultural pest of numerous crops, lays eggs in the soil close to germinating seeds. Maggots feed upon the cotyledons. Only little is known about the cues guiding oviposition behavior. In this study, the effects of both olfactory and contact cues of beans (Phaseolus vulgaris) on oviposition of D. platura females were tested. Egg deposition on germinated beans was preferred to egg deposition on ungerminated beans or on beans in different postgerminating developmental stages. Olfactory cues of germinating beans alone stimulated female flies to lay eggs. Additional contact cues of germinating beans seemed to enhance the response, but the difference was not significant. Surface extracts of germinating beans sprayed on surrogate beans showed that both polar and nonpolar substances stimulated oviposition of D. platura flies. Gas chromatography-electroantennographic detection recordings of head space samples of germinating beans showed positive response of females to different compounds. We conclude that olfaction plays a major role when D. platura females are searching for oviposition sites. Volatile compounds released from germinating beans such as 4-hydroxy-4-methyl-2-pentanone, 1-hepten-3-one, 1-octen-3-ol, and 3-octanone should be considered as key compounds that mediate oviposition behavior. The use of different sensory modalities by closely related species of Delia is discussed. Topics: Animals; Consummatory Behavior; Diptera; Electrophysiology; Female; Germination; Ketones; Neurons, Afferent; Octanols; Oils, Volatile; Oviposition; Pentanols; Pentanones; Phaseolus; Plant Extracts; Smell | 2006 |
Main compounds responsible for off-odour of strawberries infected by Phytophthora cactorum.
Volatile compounds present in strawberries infected with Phytophthora cactorum, especially those responsible for the characteristic off-odour of such fruits were the subject of this study.. Six strawberry varieties (Redgauntlet, Selva, Korona, Tenira, Real, Pegasus) inoculated with P. cactorum strain (PC-5), isolated from naturally infected fruit and one variety inoculated with 15 strains of P. cactorum in the laboratory were analysed. All the samples had a distinct, to a various degree, off-odour reminiscent of watercolour paint with phenolic notes. Volatile compounds were isolated by solid phase microextraction and simultaneous distillation extraction methods. To detect compounds responsible for the characteristic off-odour, gas chromatography-olfactometry was used. Two compounds were found to be responsible for the characteristic off-odour of strawberries infected by P. cactorum: 4-ethyl phenol and 4-ethyl-2-metoxy phenol (4-ethyl guaiacol). The content of these compounds in infected varieties ranged from 1.12 to 22.56 mg kg(-1) and 0.14-1.05 mg kg(-1) respectively. Other volatile compounds, not detected in noninoculated sound strawberries, were also identified: camphene, 1-octene-3-ol, 3-octanone, o-cymene, phenyl methanol, cis-linaloloxide, nonanal, phenyl ethyl alcohol, 2-undecanone and alpha-muurolene.. Volatile compounds responsible for the characteristic off-odour of strawberries infected with P. cactorum were identified. Also compounds produced as a result of P. cactorum growth on strawberry fruit were characterized. Topics: Aldehydes; Benzyl Alcohols; Bicyclic Monoterpenes; Chromatography, Gas; Fragaria; Guaiacol; Ketones; Octanols; Odorants; Phenols; Phenylethyl Alcohol; Phytophthora; Terpenes | 2005 |
Odor volatiles associated with microflora in damp ventilated and non-ventilated bin-stored bulk wheat.
Western hard red spring wheat, stored at 20 and 25% moisture contents for 10 months during 1985-86, was monitored for biotic and abiotic variables in 10 unheated bins in Winnipeg, Manitoba. The major odor volatiles identified were 3-methyl-1-butanol, 3-octanone and 1-octen-3-ol. The production of these volatiles was associated and correlated with microfloral infection. Ventilation, used for cooling and drying of grain, disrupted microfloral growth patterns and production of volatiles. The highest levels of 3-methyl-1-butanol occurred in 25% moisture content wheat infected with bacteria, Penicillium spp. and Fusarium spp. In non-ventilated (control) bins with 20% moisture content wheat, 3-methyl-1-butanol was correlated with infection by members of the Aspergillus glaucus group and bacteria. In control bins, 1-octen-3-ol production was correlated with infection of wheat of both moisture contents by Penicillium spp. The fungal species, isolated from damp bin-stored wheat and tested for production of odor volatiles on wheat substrate, included Alternaria alternata (Fr.) Keissler, Aspergillus repens (Corda) Saccardo, A. flavus Link ex Fries, A. versicolor (Vuill.) Tiraboschi, Penicillium chrysogenum Thom, P. cyclopium Westling, Fusarium moniliforme Sheldon, F. semitectum (Cooke) Sacc. In the laboratory, fungus-inoculated wheat produced 3-methyl-1-butanol; 3-octanone and 1-octen-3-ol were also produced, but less frequently. Two unidentified bacterial species isolated from damp wheat and inoculated on agar produced 3-methyl-1-butanol. Topics: Alcohols; Analysis of Variance; Food Microbiology; Ketones; Mitosporic Fungi; Octanols; Odorants; Pentanols; Seasons; Temperature; Triticum; Ventilation | 1989 |
Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.
The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins. Topics: Alternaria; Animals; Aspergillus; Food Contamination; Fungi; Insecta; Ketones; Octanols; Odorants; Penicillium; Pentanols; Seasons; Temperature; Triticum; Water | 1988 |