3-o-acetyl-beta-boswellic-acid has been researched along with boswellic-acid* in 12 studies
12 other study(ies) available for 3-o-acetyl-beta-boswellic-acid and boswellic-acid
Article | Year |
---|---|
Selective anti-cancer activity against melanoma cells using 3-
Topics: Humans; Melanoma; Printing, Three-Dimensional; Proto-Oncogene Proteins c-bcl-2 | 2023 |
Defined Structure-Activity Relationships of Boswellic Acids Determine Modulation of Ca2+ Mobilization and Aggregation of Human Platelets by Boswellia serrata Extracts.
Boswellic acids constitute a group of unique pentacyclic triterpene acids from Topics: Anti-Inflammatory Agents; Blood Platelets; Boswellia; Calcium; Humans; Plant Extracts; Structure-Activity Relationship; Triterpenes | 2017 |
Analogues of boswellic acids as inhibitors of pro-inflammatory cytokines TNF-α and IL-6.
A library of boswellic acid analogues were synthesized and tested for their anti-inflammatory potential on key inflammatory mediators, TNF-α and IL-6. The study led to the identification of lead compounds showing significant inhibition of the cytokines, TNF-α and IL-6 both in vitro and in vivo. Topics: Animals; Anti-Inflammatory Agents; Humans; Interleukin-6; Mice; Triterpenes; Tumor Necrosis Factor-alpha | 2016 |
Synthesis and structure-activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors.
A series of AKBA derivatives were synthesized, and evaluated as potent VEGFR-2 inhibitors. The initial biological evaluation indicated that the introduction of C-24 amide group or a heterocycle at C-2,3 position effectively improved the potency. Further structure-activity relationship analysis showed that amide (7, 23, 25, and 26) and heterocycle (19, 34, and 36) substituted AKBA derivatives displayed more potential anti-proliferation activities than AKBA (1) on HUVECs that express high levels of VEGFR-2. Among all tested compounds, compounds 7 and 19 exhibited the best potency (IC₅₀: 2.36 and 2.13 μM) and obvious inhibitory activities with VEGFR-2 inhibition rates of 96% and 94% at 50 μM, respectively. Topics: Cell Proliferation; Dose-Response Relationship, Drug; Human Umbilical Vein Endothelial Cells; Humans; Molecular Structure; Protein Kinase Inhibitors; Structure-Activity Relationship; Triterpenes; Vascular Endothelial Growth Factor Receptor-2 | 2015 |
Combination of quantitative analysis and chemometric analysis for the quality evaluation of three different frankincenses by ultra high performance liquid chromatography and quadrupole time of flight mass spectrometry.
Frankincense has gained increasing attention in the pharmaceutical industry because of its pharmacologically active components such as boswellic acids. However, the identity and overall quality evaluation of three different frankincense species in different Pharmacopeias and the literature have less been reported. In this paper, quantitative analysis and chemometric evaluation were established and applied for the quality control of frankincense. Meanwhile, quantitative and chemometric analysis could be conducted under the same analytical conditions. In total 55 samples from four habitats (three species) of frankincense were collected and six boswellic acids were chosen for quantitative analysis. Chemometric analyses such as similarity analysis, hierarchical cluster analysis, and principal component analysis were used to identify frankincense of three species to reveal the correlation between its components and species. In addition, 12 chromatographic peaks have been tentatively identified explored by reference substances and quadrupole time-of-flight mass spectrometry. The results indicated that the total boswellic acid profiles of three species of frankincense are similar and their fingerprints can be used to differentiate between them. Topics: Boswellia; Chromatography, High Pressure Liquid; Drugs, Chinese Herbal; Frankincense; Mass Spectrometry; Triterpenes | 2015 |
Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.
The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. Topics: Animals; Anti-Inflammatory Agents; Boswellia; Characidae; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dinoprostone; Humans; Inhibitory Concentration 50; Intramolecular Oxidoreductases; Lipoxygenase Inhibitors; Molecular Structure; Pentacyclic Triterpenes; Prostaglandin Antagonists; Prostaglandin-E Synthases; Resins, Plant; Structure-Activity Relationship; Tetracycline; Triterpenes | 2014 |
Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs.
Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead. Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Flow Cytometry; HL-60 Cells; Humans; Models, Chemical; NF-kappa B; Phosphorylation; STAT Transcription Factors; Triterpenes | 2012 |
Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.
Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration. Topics: Absorption; Administration, Oral; Animals; Boswellia; Brain; Caco-2 Cells; Humans; Male; Models, Biological; Permeability; Phospholipids; Poloxamer; Polysorbates; Rats; Solubility; Time Factors; Triterpenes; Vitamin E | 2012 |
A comparative study of proapoptotic potential of cyano analogues of boswellic acid and 11-keto-boswellic acid.
Semi-synthetic analogues of β-boswellic acid (BA) and 11-keto-β-boswellic acid (KBA) were comparatively evaluated for in vitro cytotoxicity against human myeloid leukaemia (HL-60) and human cervical carcinoma (HeLa) cells. 2-Cyano analogues of both the triterpenes were observed to have significant cytotoxicity against both the cells, displaying cytotoxicity in HL-60 cells at low concentrations. Further investigations suggested the proapoptotic potential associated with the two molecules to induce cytotoxicity in HL-60 cells, where one of them showed early proapoptotic effect as evidenced by several biological end-points of the apoptosis such as annexinV binding, DNA fragmentation and increase in sub-G0 DNA fraction and apoptotic bodies formation (Hoechst 33258 staining and SEM studies). Topics: Antineoplastic Agents; Apoptosis; Cell Cycle; HeLa Cells; HL-60 Cells; Humans; Nitriles; Oxygen; Triterpenes | 2011 |
Two new triterpenoids from the resin of Boswellia carterii.
Two new triterpenoids, 3-oxotirucalla-7,9(11),24-trien-21-oic acid (1) and 18Hα,3β,20β-ursanediol (2), along with 15 known triterpenes, α-amyrin, α-boswellic acid, β-boswellic acid, acetyl α-boswellic acid, acetyl β-boswellic acid, 9,11-dehydro-β-boswellic acid, 9,11-dehydro-α-boswellic acid, acetyl 11α-methoxy-β-boswellic acid, 11-keto-β-boswellic acid, acetyl 11-keto-β-boswellic acid, acetyl α-elemolic acid, 3β-hydroxytirucalla-8,24-dien-21-oic acid, elemonic acid, 3α-hydroxytirucalla-7,24-dien-21-oic acid, and 3α-hydroxytirucall-24-en-21-oic acid, were isolated from the resin of Boswellia carterii Birdw. Topics: Boswellia; Drugs, Chinese Herbal; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Resins, Plant; Stereoisomerism; Triterpenes | 2011 |
Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids.
4-Amino analogues prepared from beta-boswellic acid and 11-keto-beta-boswellic acid, wherein the carboxyl group in ursane nucleus was replaced by an amino function via Curtius reaction, displayed improved cytotoxicity than the parent molecules. The same molecules also exhibited apoptotic activity by inducing DNA fragmentation. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Boswellia; Cell Line, Tumor; DNA Fragmentation; Growth Inhibitors; Humans; Triterpenes | 2007 |
Separation and quantification of terpenoids of Boswellia serrata Roxb. extract by planar chromatography techniques (TLC and AMD).
An high-performance TLC (HPTLC) method for the separation of boswellic acids, the active constituents in Boswellia serrata extract, has been developed and TLC of these compounds on silica by automated multiple development (AMD) using solvent gradients was performed. Enhancement of the separation of boswellic acids on HPTLC plates was carried out by AMD chromatography. Densitometric analysis of the developed plate was carried out to quantify the four boswellic acids. 11-Keto-beta-boswellic acid (KBA) and acetyl-11-keto-beta-boswellic acid (AKBA) were quantified by densitometric scanning of the developed plate at 254 nm. beta-Boswellic acid (BA) and acetyl-beta-boswellic acid (ABA) were quantified after derivatization with anisaldehyde sulfuric acid reagent at 560 nm. The AMD system provided a clean separation according to polarity for each of the four groups studied and good results were obtained. The proposed HPTLC method for the simultaneous quantification of the major boswellic acids BA, ABA, KBA, and AKBA was found to be simple, precise, specific, sensitive, and accurate and can be used for routine quality control and for the quantification of these compounds in plant materials. The study of market products revealed significant variations in the content of these pharmacologically active compounds in commercial samples. Topics: Boswellia; Chromatography, Thin Layer; Plant Extracts; Reference Standards; Silicon Dioxide; Solvents; Terpenes; Triterpenes | 2006 |