3-nonenal has been researched along with 4-hydroxy-2-nonenal* in 2 studies
2 other study(ies) available for 3-nonenal and 4-hydroxy-2-nonenal
Article | Year |
---|---|
Oxygenation of (3Z)-alkenal to (2E)-4-hydroxy-2-alkenal in soybean seed (Glycine max L.).
(3Z)-Alkenals, such as (3Z)-hexenal and (3Z)-nonenal, are produced from polyunsaturated fatty acids via lipoxygenase and hydroperoxide lyase catalysis, but in soybeans (Glycine max L.) (3Z)-alkenals have a fleeting existence. In this study it was shown that soybean seeds possess two pathways that metabolize (3Z)-alkenals. One is a soluble (3Z):(2E)-enal isomerase that transformed (3Z)-hexenal and (3Z)-nonenal into the corresponding (2E)-alkenals. The other was a membrane-bound system that converted (3Z)-hexenal and (3Z)-nonenal into (2E)-4-hydroxy-2-hexenal and (2E)-4-hydroxy-2-nonenal, respectively. The latter conversion was shown to absorb O2 with a pH optimum of 9.5. Little effect observed with lipoxygenase inhibitors suggested that oxidation was not catalyzed by lipoxygenase. Instead, a specific (3Z)-alkenal oxygenase was implicated in forming intermediate alkenal hydroperoxides. Hydroperoxide-dependent peroxygenase (epoxygenase) is known to reduce hydroperoxides to their corresponding hydroxides and is also known to be inhibited by hydrogen peroxide preincubation. Consequently, intermediate 4-hydroperoxy-2-alkenals could be observed after inhibiting hydroperoxide-dependent peroxygenase by preincubation with hydrogen peroxide. Because 4-hydroxy-2-alkenals are potent toxins, these compounds may be produced as nonvolatile plant defensive substances. Topics: Aldehydes; cis-trans-Isomerases; Enzyme Inhibitors; Glycine max; Hydrogen Peroxide; Isomerases; Lipoxygenase; Lipoxygenase Inhibitors; Membrane Proteins; Mixed Function Oxygenases; Oxidation-Reduction; Oxygen; Oxygen Consumption; Plant Proteins | 1996 |
Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.).
Incubation of (3Z)-nonenal (NON) with the 269,000-g particle fraction of seed homogenate of the broad bean (Vicia faba L.) afforded (2E)-4-hydroxy-2-nonenal (HNE) as the principal product. One pathway of HNE formation consisted of initial oxygenation of NON into (2E)-4-hydroperoxy-2-nonenal (HPNE) by a novel (3Z)-alkenal oxygenase activity, followed by conversion of HPNE into HNE by a previously recognized hydroperoxide-dependent epoxygenase. The hydroperoxide intermediate was detected in coincubations of NON and oleic acid, in which experiments the HPNE generated from NON supported epoxygenase-catalyzed epoxidation of oleic acid into 9,10-epoxystearic acid. Furthermore, by using an enzyme preparation in which the epoxygenase had been inactivated by pretreatment with hydrogen peroxide it was possible to isolate and characterize racemic (4R,4S) HPNE following incubation of NON. Although the (3Z)-alkenal oxygenase resembled a lipoxygenase in its action, it was not inhibited by the lipoxygenase inhibitors, 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In a second pathway, HNE was produced by rearrangement of 3,4-epoxynonenal, which was in turn formed from NON by a reaction catalyzed by hydroperoxide-dependent epoxygenase. Support for this pathway came from experiments in which 18O-labeled HNE was isolated following coincubation of NON and 13-18O-labeled linoleic acid 13-hydroperoxide. The existence of 3,4-epoxynonenal as a transient intermediate in HNE biosynthesis was further demonstrated by the isolation of 3,4-epoxynonenal (61% (4R)-configuration) as a trapping product in short time incubations interrupted by addition of sodium borohydride. The two pathways established for biosynthesis of HNE involved the hydroperoxide-reducing and the olefin-epoxidizing activities of hydroperoxide-dependent epoxygenase. In the absence of extraneous olefins and hydroperoxides the two pathways would be tightly coupled and follow the stoichiometry: 2NON + 1O2-->2HNE. It was also shown that the V. faba particle fraction catalyzed oxygenation of (3Z)-hexenal into (2E)-4-hydroxy-2-hexenal. Topics: Aldehydes; Fabaceae; Hydrogen Peroxide; Hydroxylation; Lipoxygenase Inhibitors; Microsomes; Oleic Acid; Oleic Acids; Oxidation-Reduction; Oxygen; Plants, Medicinal; Stereoisomerism; Substrate Specificity | 1993 |