3-nitrotyrosine and salvin

3-nitrotyrosine has been researched along with salvin* in 2 studies

Other Studies

2 other study(ies) available for 3-nitrotyrosine and salvin

ArticleYear
Carnosic Acid Pretreatment Attenuates Mitochondrial Dysfunction in SH-SY5Y Cells in an Experimental Model of Glutamate-Induced Excitotoxicity.
    Neurotoxicity research, 2019, Volume: 36, Issue:3

    Mitochondria are the major site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, mitochondria produce most of the reactive oxygen species (ROS) in nucleated cells. Redox and bioenergetic abnormalities have been seen in mitochondria during the onset and progression of neurodegenerative diseases. In that context, excitotoxicity induced by glutamate (GLU) plays an important role in mediating neurotoxicity. Several drugs have been used in the treatment of diseases involving excitotoxicity. Nonetheless, some patients (20-30%) present drug resistance. Thus, it is necessary to find chemicals able to attenuate mitochondrial dysfunction in the case of excitotoxicity. In this work, we treated the human neuroblastoma SH-SY5Y cell line with the diterpene carnosic acid (CA) at 1 μM for 12 h prior to the exposure to GLU for further 24 h. We found that CA prevented the GLU-induced mitochondrion-related redox impairment and bioenergetic decline in SH-SY5Y cells. CA also downregulated the pro-apoptotic stimulus elicited by GLU in this experimental model. CA exerted mitochondrial protection by a mechanism associated with the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since silencing of this protein with small interfering RNA (siRNA) suppressed the CA-induced protective effects. Future directions include investigating whether CA would be able to modulate mitochondrial function and/or dynamics in in vivo experimental models of excitotoxicity.

    Topics: Abietanes; Apoptosis; Cell Line, Tumor; Cell Survival; Glutamic Acid; Humans; Membrane Potential, Mitochondrial; Mitochondria; Neuroblastoma; Neurons; Neuroprotective Agents; NF-E2-Related Factor 2; Nitric Oxide; Oxidation-Reduction; Reactive Oxygen Species; Tyrosine

2019
Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice.
    Physiology & behavior, 2016, 10-15, Volume: 165

    Oxidative damage is one of the hallmarks of the aging process. The current study evaluated effects of two proprietary antioxidant-based ingredients, rosemary extract and spearmint extract containing carnosic acid and rosmarinic acid, respectively, on learning and memory in the SAMP8 mouse model of accelerated aging. The two rosemary extracts contained carnosic acid (60% or 10% carnosic acid) and one spearmint extract contained 5% rosmarinic acid. Three doses of actives in each extract were tested: 32, 16, 1.6 or 0mg/kg. After 90days of treatment mice were tested in T-maze foot shock avoidance, object recognition and lever press. Rosemary extract containing 60% carnosic acid improved acquisition and retention in T-maze foot shock, object recognition and lever press. Rosemary extract with 10% carnosic acid improved retention in T-maze foot shock avoidance and lever press. Spearmint with 5% rosmarinic acid improved acquisition and retention in T-maze foot shock avoidance and object recognition. 4-hydroxynonenal (HNE) was reduced in the brain cortex after treatment with all three extracts (P<0.001) compared to the vehicle treated SAMP8. Protein carbonyls were reduced in the hippocampus after administration of rosemary with 10% carnosic acid (P<0.05) and spearmint containing 5% rosmarinic acid (P<0.001). The current results indicate that the extracts from spearmint and rosemary have beneficial effects on learning and memory and brain tissue markers of oxidation that occur with age in SAMP8 mice.

    Topics: Abietanes; Aging; Aldehydes; Analysis of Variance; Animals; Cinnamates; Conditioning, Classical; Conditioning, Operant; Depsides; Dose-Response Relationship, Drug; Electroshock; Maze Learning; Mice; Mice, Mutant Strains; Oxidative Stress; Recognition, Psychology; Reinforcement, Psychology; Rosmarinic Acid; Rosmarinus; Triglycerides; Tyrosine

2016