3-nitrotyrosine and phenylacetic-acid

3-nitrotyrosine has been researched along with phenylacetic-acid* in 2 studies

Other Studies

2 other study(ies) available for 3-nitrotyrosine and phenylacetic-acid

ArticleYear
Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration.
    Archives of biochemistry and biophysics, 2004, Jan-01, Volume: 421, Issue:1

    Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.

    Topics: Animals; Catalysis; Cattle; Cytochromes c; Horses; Humans; Hydrogen Peroxide; Jurkat Cells; Mitochondria, Liver; Myocardium; Nitrates; Nitrites; Peroxidase; Phenylacetates; Rats; Recombinant Proteins; Serum Albumin, Bovine; Superoxide Dismutase; Tyrosine

2004
Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps.
    Journal of immunology (Baltimore, Md. : 1950), 2003, Apr-01, Volume: 170, Issue:7

    Experimental allergic encephalomyelitis (EAE) is the animal model for multiple sclerosis. The present study underlines the importance of sodium phenylacetate (NaPA), a drug approved for urea cycle disorders, in inhibiting the disease process of adoptively transferred EAE in female SJL/J mice at multiple steps. Myelin basic protein (MBP)-primed T cells alone induced the expression of NO synthase (iNOS) and the activation of NF-kappaB in mouse microglial cells through cell-cell contact. However, pretreatment of MBP-primed T cells with NaPA markedly inhibited its ability to induce microglial expression of iNOS and activation of NF-kappaB. Consistently, adoptive transfer of MBP-primed T cells, but not that of NaPA-pretreated MBP-primed T cells, induced the clinical symptoms of EAE in female SJL/J mice. Furthermore, MBP-primed T cells isolated from NaPA-treated donor mice were also less efficient than MBP-primed T cells isolated from normal donor mice in inducing iNOS in microglial cells and transferring EAE to recipient mice. Interestingly, clinical symptoms of EAE were much less in mice receiving NaPA through drinking water than those without NaPA. Similar to NaPA, sodium phenylbutyrate, a chemically synthesized precursor of NaPA, also inhibited the disease process of EAE. Histological and immunocytochemical analysis showed that NaPA inhibited EAE-induced spinal cord mononuclear cell invasion and normalized iNOS, nitrotyrosine, and p65 (the RelA subunit of NF-kappaB) expression within the spinal cord. Taken together, our results raise the possibility that NaPA or sodium phenylbutyrate taken through drinking water or milk may reduce the observed neuroinflammation and disease process in multiple sclerosis patients.

    Topics: Acute Disease; Administration, Oral; Adoptive Transfer; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Differentiation; Cell Line; Cell Movement; Chronic Disease; Disease Progression; Encephalomyelitis, Autoimmune, Experimental; Enzyme Inhibitors; Female; Growth Inhibitors; Immunosuppressive Agents; Injections, Intraperitoneal; Lymphocyte Activation; Mice; Mice, Inbred Strains; Microglia; Myelin Basic Protein; NF-kappa B; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Phenylacetates; Phenylbutyrates; Severity of Illness Index; Spinal Cord; T-Lymphocyte Subsets; Transcription Factor RelA; Tyrosine

2003