3-nitrotyrosine has been researched along with palmidrol* in 6 studies
6 other study(ies) available for 3-nitrotyrosine and palmidrol
Article | Year |
---|---|
Protective Effects of Ultramicronized Palmitoylethanolamide (PEA-um) in Myocardial Ischaemia and Reperfusion Injury in VIVO.
Myocardial infarction is the leading cause of death, occurs after prolonged ischemia of the coronary arteries. Restore blood flow is the first intervention help against heart attack. However, reperfusion of the arteries leads to ischemia/reperfusion injury (I/R). The fatty acid amide palmitoylethanolamide (PEA) is an endogenous compound widely present in living organisms, with analgesic and anti-inflammatory properties. The present study evaluated the effect of ultramicronized palmitoylethanolamide (PEA-um) treatment on the inflammatory process associated with myocardial I/R. Myocardial ischemia reperfusion injury was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. PEA-um, was administered (10 mg/kg) 15 min after ischemia and 1 h after reperfusion. In this study, we demonstrated that PEA-um treatment reduces myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, nuclear factor kB expression, and apoptosis (Fas-L, Bcl-2) activation. In addition to study whether the protective effect of PEA-um on myocardial ischemia reperfusion injury is also related to the activation of PPAR-α, in a separate set of experiments it has been performed myocardial I/R in PPARα mice. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated Myocardial ischemia reperfusion injury when compared with PPAR-αWT mice. PEA-um induced cardioprotection in PPAR-α wild-type mice, but the same effect cannot be observed in PPAR-αKO mice. Our results have clearly shown a modulation of the inflammatory process, associated with myocardial ischemia reperfusion injury, following administration of PEA-um. Topics: Amides; Animals; Ethanolamines; Immunohistochemistry; Intercellular Adhesion Molecule-1; Interleukin-1beta; Male; Mice; Mice, Knockout; Microtomy; Myocardial Ischemia; Myocardial Reperfusion Injury; P-Selectin; Palmitic Acids; PPAR alpha; Rats, Wistar; Tumor Necrosis Factor-alpha; Tyrosine | 2016 |
A new co-micronized composite containing palmitoylethanolamide and polydatin shows superior oral efficacy compared to their association in a rat paw model of carrageenan-induced inflammation.
Palmitoylethanolamide (PEA), a special food for medical purposes, has anti-inflammatory and neuroprotective effects. Nevertheless, PEA lacks direct ability to prevent free radical formation. Polydatin (PLD), a natural precursor of resveratrol, has antioxidant activity. The combination of PEA and PLD could have beneficial effects on oxidative stress induced by inflammatory processes. In the present study, we compared the effects of micronized PEA (PEA-m) and PLD association (PEA-m+PLD) with a new co-micronized composite containing PEA and PLD (m(PEA/PLD)) in the rat paw model of carrageenan (CAR)-induced acute inflammation. Intraplantar injection of CAR led to a time-dependent development of peripheral inflammation, in terms of paw edema, cytokine release in paw exudates, nitrotyrosine formation, inducible nitric oxide synthase and cyclooxygenase-2 expression. m(PEA/PLD) reduced all measured parameters. Thermal hyperalgesia and mechanical allodynia were also markedly reduced. At the spinal cord level, manganese superoxide dismutase (MnSOD) was found to be nitrated and subsequently deactivated. Further, m(PEA/PLD) treatment increased spinal MnSOD expression, prevented IkB-α degradation and nuclear factor-κB translocation, suggesting a possible role on central sensitization. m(PEA/PLD) showed more robust anti-inflammatory and anti-hyperalgesic effects compared to the simple association of PEA-m and PLD. This composite formulation approach opens a new therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents. Topics: Active Transport, Cell Nucleus; Administration, Oral; Amides; Animals; Carrageenan; Cell Line, Tumor; Cell Nucleus; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Drug Compounding; Drug Interactions; Edema; Ethanolamines; Gene Expression Regulation, Enzymologic; Glucosides; Hyperalgesia; Inflammation; Male; Neutrophil Infiltration; NF-KappaB Inhibitor alpha; Nitric Oxide Synthase Type II; Palmitic Acids; Proteolysis; Rats; Rats, Sprague-Dawley; Stilbenes; Superoxide Dismutase; Transcription Factor RelA; Tyrosine | 2016 |
Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease.
Leukocyte infiltration, improved levels of intercellular adhesion molecule 1 (ICAM-1), and oxidative stress in the colon are the principal factors in inflammatory bowel disease. The goal of the current study was to explore the effects of adelmidrol, an analog of the anti-inflammatory fatty acid amide signaling molecule palmitoylethanolamide, in mice subjected to experimental colitis. Additionally, to clarify whether the protective action of adelmidrol is dependent on the activation of peroxisome proliferator-activated receptors (PPARs), we investigated the effects of a PPARγ antagonist, GW9662, on adelmidrol action. Adelmidrol (10 mg/kg daily, o.s.) was tested in a murine experimental model of colitis induced by intracolonic administration of dinitrobenzene sulfonic acid. Nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase, as well as tumor necrosis factor-α and interleukin-1β, were significantly increased in colon tissues after dinitrobenzene sulfonic acid administration. Immunohistochemical staining for ICAM-1, P-selectin, nitrotyrosine, and poly(ADP)ribose showed a positive staining in the inflamed colon. Treatment with adelmidrol decreased diarrhea, body weight loss, and myeloperoxidase activity. Adelmidrol treatment, moreover, reduced nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase expression; proinflammatory cytokine release; and the incidence of nitrotyrosine and poly(ADP)ribose in the colon. It also decreased the upregulation of ICAM-1 and P-selectin. Adelmidrol treatment produced a reduction of Bax and an intensification of Bcl-2 expression. This study clearly demonstrates that adelmidrol exerts important anti-inflammatory effects that are partly dependent on PPARγ, suggesting that this molecule may represent a new pharmacologic approach for inflammatory bowel disease treatment. Topics: Amides; Animals; Anti-Inflammatory Agents; Apoptosis; Body Weight; Colitis; Cyclooxygenase 2; Cytokines; Dicarboxylic Acids; Dinitrofluorobenzene; Ethanolamines; Extracellular Signal-Regulated MAP Kinases; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Male; Mice; NF-kappa B; P-Selectin; Palmitic Acids; Peroxidase; Phosphorylation; PPAR alpha; PPAR gamma; Receptor, Cannabinoid, CB2; Signal Transduction; Tyrosine | 2016 |
The anti-inflammatory effects of palmitoylethanolamide (PEA) on endotoxin-induced uveitis in rats.
The aim of this study was to investigate the effects of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines (NAEs), in rats subjected to endotoxin-induced uveitis (EIU). EIU was induced in male rats by a single footpad injection of 200μg lipopolysaccharide (LPS). PEA was administered intraperitoneally at 1h before and 7h after injection of LPS. Another group of animals was treated with vehicle. Dexamethasone (DEX) was administered as a positive control. Rats were sacrificed 16h after injection and the eyes tissues were collected for histology, immunohistochemical and western blot analyses. The histological evaluation of the iris-ciliary body showed an increase of neutrophilic infiltration and nuclear modification of vessel of endothelial cells. PEA treatment decreased the inflammatory cell infiltration and improved histological damage of eye tissues. In addition, PEA treatment reduced pro-inflammatory tumor necrosis factor (TNF-α) levels, protein extravasion and lipid peroxidation. Immunohistochemical analysis for intracellular adhesion molecule (ICAM)-1 and nitrotyrosine showed a positive staining from LPS-injected rats. The degree of staining for ICAM-1 and nitrotyrosine was significantly reduced in eye sections from LPS-injected rats treated with PEA. In addition, an increase of inducible nitric oxide synthase (iNOS) and nuclear factor (NF-κB) was also evaluated in inflammed ocular tissues by western blot. PEA strongly inhibited iNOS expression and nuclear NF-κB translocation. Thus, in this study we demonstrated that PEA reduces the degree of ocular inflammation in a rat model of EIU. Topics: Active Transport, Cell Nucleus; Amides; Animals; Anti-Inflammatory Agents; Dexamethasone; Disease Models, Animal; Endothelial Cells; Ethanolamines; Inflammation Mediators; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Lipopolysaccharides; Male; Malondialdehyde; Neutrophil Infiltration; Nitric Oxide Synthase Type II; Palmitic Acids; Rats, Inbred Lew; Transcription Factor RelA; Tumor Necrosis Factor-alpha; Tyrosine; Uvea; Uveitis | 2015 |
Effects of palmitoylethanolamide and silymarin combination treatment in an animal model of kidney ischemia and reperfusion.
The aim of this study was to investigate the efficacy of PEA+silymarin as a combination treatment in a mouse model of renal I/R and to verify whether PEA+silymarin could exert more potent effects compared to the single substances even if administered at lower doses. Mice were subjected to bilateral renal artery occlusion (30min) and reperfusion (6h) and received intraperitoneally silymarin (100, 30 and 10mg/kg) or PEA (1mg/kg) or PEA (1mg/kg)+silymarin (10mg/kg) 15min before release of clamps. Specific indicators of renal dysfunction, tubular injury, myeloperoxidase activity and malondialdehyde levels were measured. The nuclear factor κB pathway and apoptotic mechanisms were also investigated. The treatment with silymarin reduced kidney dysfunction, histological damage, neutrophil infiltration and oxidative stress in a dose dependent manner. Furthermore, PEA+silymarin showed a significant potentiated effect. Therefore, NF-κB and apoptosis pathways were also significantly inhibited. Our results clearly demonstrate that PEA+silymarin treatment attenuated the degree of renal inflammation. Topics: Active Transport, Cell Nucleus; Amides; Animals; Apoptosis; Cell Nucleus; Chymases; Cytokines; Disease Models, Animal; Disease Progression; Drug Interactions; Ethanolamines; Gene Expression Regulation; Kidney; Male; Mice; Nitrates; Nitrites; Oxidative Stress; Palmitic Acids; Reperfusion Injury; Risk Factors; Silymarin; Transcription Factor RelA; Tyrosine | 2015 |
Palmitoylethanolamide reduces early renal dysfunction and injury caused by experimental ischemia and reperfusion in mice.
This study was designed to assess a protective effect of palmitoylethanolamide (PEA) in the development of inflammation after ischemia-reperfusion injury of the kidney. Moreover, to suggest a possible mechanism, renal ischemia-reperfusion was performed in mice with targeted disruption of peroxisome proliferator-activated receptor α (PPAR-α) gene (PPAR-αKO) to explain whether the observed PEA effect was dependent on PPAR-α pathway. Peroxisome proliferator-activated receptor-αKO and littermate wild-type controls (PPAR-αWT) were subjected to bilateral renal artery occlusion (30 min) and reperfusion (6 h) and received PEA (10 mg/kg i.p.) 15 min before release of clamps. Serum and urinary indicators of renal dysfunction and tubular and reperfusion injury were measured, specifically serum urea, creatinine, aspartate aminotransferase and γ-glutamyl transferase, and creatinine clearance. In addition, renal sections were used for histological scoring of renal injury and for immunologic evidence of nitrotyrosine formation, poly[adenosine diphosphate-ribose] (PAR), and adhesion molecules expression. The oxidative stress-sensitive nuclear factor κB signaling pathway was also investigated by Western blot analysis. Kidney myeloperoxidase activity and malondialdehyde levels were measured for assessment of polymorphonuclear leukocyte cell infiltration and lipid peroxidation, respectively. Apoptotic mechanisms were also investigated. Moreover, the infiltration and activation of mast cells were explored. In vivo, PEA administration during ischemia significantly reduced the increase in (i) creatinine, γ-glutamyl transferase, aspartate aminotransferase; (ii) nuclear translocation of nuclear factor κB p65; (iii) kidney myeloperoxidase activity and malondialdehyde levels; (iv) nitrotyrosine, PAR, and adhesion molecules expression; (v) the infiltration and activation of mast cells; and (vi) apoptosis. Our results clearly demonstrate that PEA significantly attenuated the degree of renal dysfunction, injury, and inflammation caused by ischemia-reperfusion injury. Moreover, the positive effects of PEA were at least in part dependent on PPAR-α pathway. Topics: Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Aspartate Aminotransferases; Cell Adhesion Molecules; Endocannabinoids; Ethanolamines; gamma-Glutamyltransferase; Gene Expression Regulation; Kidney; Leukocytes; Mice; Mice, Knockout; Palmitic Acids; Poly Adenosine Diphosphate Ribose; PPAR alpha; Reperfusion Injury; Tyrosine | 2012 |