3-nitrotyrosine has been researched along with malonic-acid* in 6 studies
6 other study(ies) available for 3-nitrotyrosine and malonic-acid
Article | Year |
---|---|
Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain.
Production of reactive oxygen and/or nitrogen species has been thought to contribute to the long-term depletion of brain dopamine and serotonin (5-HT) produced by amphetamine derivatives, i.e., methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). In the present study, the effects of nitric-oxide synthase (NOS) inhibitors were examined on the long-term depletion of striatal dopamine and/or 5-HT produced by the local perfusion of malonate and MDMA or the systemic administration of MDMA. The effect of MDMA on nitric oxide formation and nitrotyrosine concentration also was determined. Perfusion with MDMA and malonate resulted in a 34% reduction of 5-HT and 49% reduction of dopamine concentrations in the striatum. The systemic administration of NOS inhibitors, N(omega)-nitro-l-arginine methyl ester hydrochloride and S-methyl-l-thiocitrulline (S-MTC), and the peroxynitrite decomposition catalyst Fe(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride attenuated the MDMA- and malonate-induced depletion of striatal dopamine and 5-HT. S-MTC also attenuated the depletion of 5-HT in the striatum produced by the systemic administration of MDMA without attenuating MDMA-induced hyperthermia. Additionally, the systemic administration of MDMA significantly increased the formation of nitric oxide and the nitrotyrosine concentration in the striatum. These results support the conclusion that MDMA produces reactive nitrogen species in the rat that contribute to the neurotoxicity of this amphetamine analog. Topics: Animals; Brain Chemistry; Citrulline; Dopamine; Enzyme Inhibitors; Fever; Male; Malonates; Microdialysis; N-Methyl-3,4-methylenedioxyamphetamine; Neostriatum; Nerve Tissue Proteins; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Peroxynitrous Acid; Rats; Serotonin; Serotonin Agents; Thiourea; Tyrosine | 2005 |
Deleterious activation of poly(ADP-ribose)polymerase-1 in brain after in vivo oxidative stress.
Oxidative stress has been shown to be implicated in the pathogenesis of central nervous system injuries such as cerebral ischemia and trauma, and chronic neurodegenerative diseases. In vitro studies show that oxidative stress, particularly peroxynitrite, could trigger DNA strand breaks, which lead to the activation of repairing enzymes including Poly(ADP-ribose) Polymerase-1 (PARP-1). As excessive activation of this enzyme induces cell death, we examined whether such a cascade also occurs in vivo in a model of oxidative stress in rat brain. For this purpose, the mitochondrial toxin malonate, which promotes free radical production, was infused into the left striatum of rats. Immunohistochemistry showed that 3-nitrotyrosine, an indicator of nitrosative stress, and poly(ADP-ribose), a marker of poly(ADP-ribose)polymerase-1 activation, were present as early as 1 h after malonate, and that they persisted for 24 h. The PARP inhibitor, 3-aminobenzamide, significantly reduced the lesion and inhibited PARP-1 activation induced by malonate. These results demonstrate that oxidative stress induced in vivo in the central nervous system leads to the activation of poly(ADP-ribose)polymerase-1, which contributes to neuronal cell death. Topics: Animals; Apoptosis; Benzamides; Brain; Brain Diseases; Enzyme Activation; Immunohistochemistry; Male; Malonates; Oxidative Stress; Poly Adenosine Diphosphate Ribose; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley; Substantia Nigra; Tyrosine | 2003 |
Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.
Glutathione peroxidase (GSHPx) is a critical intracellular enzyme involved in detoxification of hydrogen peroxide (H(2)O(2)) to water. In the present study we examined the susceptibility of mice with a disruption of the glutathione peroxidase gene to the neurotoxic effects of malonate, 3-nitropropionic acid (3-NP), and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Glutathione peroxidase knock-out mice showed no evidence of neuropathological or behavioral abnormalities at 2-3 months of age. Intrastriatal injections of malonate resulted in a significant twofold increase in lesion volume in homozygote GSHPx knock-out mice as compared to both heterozygote GSHPx knock-out and wild-type control mice. Malonate-induced increases in conversion of salicylate to 2,3- and 2, 5-dihydroxybenzoic acid, an index of hydroxyl radical generation, were greater in homozygote GSHPx knock-out mice as compared with both heterozygote GSHPx knock-out and wild-type control mice. Administration of MPTP resulted in significantly greater depletions of dopamine, 3,4-dihydroxybenzoic acid, and homovanillic acid in GSHPx knock-out mice than those seen in wild-type control mice. Striatal 3-nitrotyrosine (3-NT) concentrations after MPTP were significantly increased in GSHPx knock-out mice as compared with wild-type control mice. Systemic 3-NP administration resulted in significantly greater striatal damage and increases in 3-NT in GSHPx knock-out mice as compared to wild-type control mice. The present results indicate that a knock-out of GSHPx may be adequately compensated under nonstressed conditions, but that after administration of mitochondrial toxins GSHPx plays an important role in detoxifying increases in oxygen radicals. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 3,4-Dihydroxyphenylacetic Acid; Animals; Brain Chemistry; Catechols; Convulsants; Corpus Striatum; Disease Models, Animal; Dopamine Agents; Female; Free Radicals; Glutathione; Glutathione Peroxidase; Heterozygote; Homovanillic Acid; Homozygote; Huntington Disease; Male; Malonates; Mice; Mice, Inbred Strains; Mice, Knockout; MPTP Poisoning; Nitro Compounds; Oxidative Stress; Parkinson Disease, Secondary; Propionates; Tyrosine | 2000 |
Novel free radical spin traps protect against malonate and MPTP neurotoxicity.
Both malonate and 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) are neurotoxins which cause energy depletion, secondary excitotoxicity, and free radical generation. Malonate is a reversible inhibitor of succinate dehydrogenase, while MPTP is metabolized to 1-methyl-4-phenylpyridinium, an inhibitor of mitochondrial complex I. We examined the effects of pretreatment with the cyclic nitrone free radical spin trap MDL 101,002 on malonate and MPTP neurotoxicity. MDL 101,002 produced dose-dependent neuroprotection against malonate-induced striatal lesions. MDL 101, 002 produced significant protection against MPTP induced depletions of dopamine and its metabolites. MDL 101,002 also significantly attenuated MPTP-induced increases in striatal 3-nitrotyrosine concentrations. The free radical spin trap tempol also produced significant protection against MPTP neurotoxicity. These findings provide further evidence that free radical spin traps produce neuroprotective effects in vivo and suggest that they may be useful in the treatment of neurodegenerative diseases. Topics: Animals; Corpus Striatum; Dopamine; Dopamine Agents; Dopamine Antagonists; Free Radicals; Isoquinolines; Male; Malonates; Mice; MPTP Poisoning; Neuroprotective Agents; Nitrogen Oxides; Spin Labels; Tyrosine | 1999 |
Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease.
The gene defect in Huntington's disease (HD) may result in an impairment of energy metabolism. Malonate and 3-nitropropionic acid (3-NP) are inhibitors of succinate dehydrogenase that produce energy depletion and lesions that closely resemble those of HD. Oral supplementation with creatine or cyclocreatine, which are substrates for the enzyme creatine kinase, may increase phosphocreatine (PCr) or phosphocyclocreatine (PCCr) levels and ATP generation and thereby may exert neuroprotective effects. We found that oral supplementation with either creatine or cyclocreatine produced significant protection against malonate lesions, and that creatine but not cyclocreatine supplementation significantly protected against 3-NP neurotoxicity. Creatine and cyclocreatine increased brain concentrations of PCr and PCCr, respectively, and creatine protected against depletions of PCr and ATP produced by 3-NP. Creatine supplementation protected against 3-NP induced increases in striatal lactate concentrations in vivo as assessed by 1H magnetic resonance spectroscopy. Creatine and cyclocreatine protected against malonate-induced increases in the conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid, biochemical markers of hydroxyl radical generation. Creatine administration protected against 3-NP-induced increases in 3-nitrotyrosine concentrations, a marker of peroxynitrite-mediated oxidative injury. Oral supplementation with creatine or cyclocreatine results in neuroprotective effects in vivo, which may represent a novel therapeutic strategy for HD and other neurodegenerative diseases. Topics: Adenosine Triphosphate; Animals; Antihypertensive Agents; Antineoplastic Agents; Creatine; Creatinine; Disease Models, Animal; Energy Metabolism; Free Radicals; Huntington Disease; Lactates; Male; Malonates; Neostriatum; Neuroprotective Agents; Neurotoxins; Nitro Compounds; Oxidative Stress; Propionates; Rats; Rats, Sprague-Dawley; Tyrosine | 1998 |
Striatal malonate lesions are attenuated in neuronal nitric oxide synthase knockout mice.
Intrastriatal administration of the reversible succinate dehydrogenase inhibitor malonate produces both energy depletion and striatal lesions by a secondary excitotoxic mechanism. To investigate the role of nitric oxide (NO.) in the pathogenesis of the lesions we examined malonate toxicity in mice in which the genes for neuronal nitric oxide synthase (nNOS) or endothelial nitric oxide synthase (eNOS) were disrupted. Malonate striatal lesions were significantly attenuated in the nNOS mutant mice, and they were significantly increased in the eNOS mutant mice. Malonate-induced increases in levels of 2,3- and 2,5-dihydroxybenzoic acid/salicylate, markers of hydroxyl radical generation, were significantly attenuated in the nNOS knockout mice. Malonate-induced increases in 3-nitrotyrosine, a marker for peroxynitrite-mediated damage, were blocked in the nNOS mice, whereas a significant increase occurred in the eNOS mice. These findings show that NO. produced by nNOS results in generation of peroxynitrite, which plays a role in malonate neurotoxicity. Topics: Animals; Free Radicals; Malonates; Mice; Mice, Knockout; Neostriatum; Neurons; Neuroprotective Agents; Nitric Oxide Synthase; Thallium; Tyrosine | 1996 |