3-nitrotyrosine and acetovanillone

3-nitrotyrosine has been researched along with acetovanillone* in 22 studies

Trials

1 trial(s) available for 3-nitrotyrosine and acetovanillone

ArticleYear
Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans.
    American journal of physiology. Heart and circulatory physiology, 2019, 07-01, Volume: 317, Issue:1

    Topics: Acetophenones; Adult; Antioxidants; Biomarkers; Blood Flow Velocity; Cyclic N-Oxides; Endothelial Cells; Female; Forearm; Humans; Male; Microcirculation; Middle Aged; NADP; Oxidative Stress; Reactive Oxygen Species; Skin; Sodium Chloride, Dietary; Spin Labels; Time Factors; Tyrosine; Vasodilation; Young Adult

2019

Other Studies

21 other study(ies) available for 3-nitrotyrosine and acetovanillone

ArticleYear
Effects of epidural compression on stellate neurons and thalamocortical afferent fibers in the rat primary somatosensory cortex.
    Acta neurobiologiae experimentalis, 2017, Volume: 77, Issue:1

    A number of neurological disorders such as epidural hematoma can cause compression of cerebral cortex. We here tested the hypothesis that sustained compression of primary somatosensory cortex may affect stellate neurons and thalamocortical afferent (TCA) fibers. A rat model with barrel cortex subjected to bead epidural compression was used. Golgi-Cox staining analyses showed the shrinkage of dendritic arbors and the stripping of dendritic spines of stellate neurons for at least 3 months post-lesion. Anterograde tracing analyses exhibited a progressive decline of TCA fiber density in barrel field for 6 months post-lesion. Due to the abrupt decrease of TCA fiber density at 3 days after compression, we further used electron microscopy to investigate the ultrastructure of TCA fibers at this time. Some TCA fiber terminal profiles with dissolved or darkened mitochondria and fewer synaptic vesicles were distorted and broken. Furthermore, the disruption of mitochondria and myelin sheath was observed in some myelinated TCA fibers. In addition, expressions of oxidative markers 3-nitrotyrosine and 4-hydroxynonenal were elevated in barrel field post-lesion. Treatment of antioxidant ascorbic acid or apocynin was able to reverse the increase of oxidative stress and the decline of TCA fiber density, rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons post-lesion. Together, these results indicate that sustained epidural compression of primary somatosensory cortex affects the TCA fibers and the dendrites of stellate neurons for a prolonged period. In addition, oxidative stress is responsible for the reduction of TCA fiber density in barrels rather than the shrinkage of dendrites and the stripping of dendritic spines of stellate neurons.

    Topics: Acetophenones; Afferent Pathways; Aldehydes; Animals; Antioxidants; Ascorbic Acid; Biotin; Brain Injuries; Dendrites; Dextrans; Disease Models, Animal; Electron Transport Complex IV; Epidural Space; Functional Laterality; Male; Neurons; Oxidative Stress; Rats; Somatosensory Cortex; Thalamus; Time Factors; Tyrosine

2017
Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.
    Free radical biology & medicine, 2017, Volume: 112

    Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation.

    Topics: Acetophenones; Acetylcysteine; Animals; C-Reactive Protein; Cell Line; Dose-Response Relationship, Drug; Etanercept; Gene Expression Regulation; Guanidines; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Male; Mice; Mice, Inbred BALB C; NADPH Oxidases; NF-kappa B; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type II; Oxidation-Reduction; Proline; Reactive Nitrogen Species; Reactive Oxygen Species; Signal Transduction; Thiocarbamates; Tumor Necrosis Factor-alpha; Tyrosine

2017
Oxidative stress augments chemoreflex sensitivity in rats exposed to chronic intermittent hypoxia.
    Respiratory physiology & neurobiology, 2016, Volume: 234

    Chronic exposure to intermittent hypoxia (CIH) elicits plasticity of the carotid sinus and phrenic nerves via reactive oxygen species (ROS). To determine whether CIH-induced alterations in ventilation, metabolism, and heart rate are also dependent on ROS, we measured responses to acute hypoxia in conscious rats after 14 and 21 d of either CIH or normoxia (NORM), with or without concomitant administration of allopurinol (xanthine oxidase inhibitor), combined allopurinol plus losartan (angiotensin II type 1 receptor antagonist), or apocynin (NADPH oxidase inhibitor). Carotid body nitrotyrosine production was measured by immunohistochemistry. CIH produced an increase in the ventilatory response to acute hypoxia that was virtually eliminated by all three pharmacologic interventions. CIH caused a robust increase in carotid body nitrotyrosine production that was greatly attenuated by allopurinol plus losartan and by apocynin but unaffected by allopurinol. CIH caused a decrease in metabolic rate and a reduction in hypoxic bradycardia. Both of these effects were prevented by allopurinol, allopurinol plus losartan, and apocynin.

    Topics: Acetophenones; Allopurinol; Analysis of Variance; Animals; Anti-Arrhythmia Agents; Antioxidants; Body Weight; Carbon Dioxide; Carotid Sinus; Catecholamines; Chemoreceptor Cells; Free Radical Scavengers; Heart Rate; Hypoxia; Losartan; Male; Oxidative Stress; Oxygen Consumption; Plethysmography; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Regression Analysis; Respiration; Tidal Volume; Time Factors; Tyrosine

2016
Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress.
    Antioxidants & redox signaling, 2013, Apr-20, Volume: 18, Issue:12

    Psychosocial stress alters the hypothalamic-pituitary-adrenal axis (HPA-axis). Increasing evidence shows a link between these alterations and oxidant elevation. Oxidative stress is implicated in the stress response and in the pathogenesis of neurologic and psychiatric diseases. NADPH oxidases (NOXs) are a major source of reactive oxygen species (ROS) in the central nervous system. Here, we investigated the contributory role of NOX2-derived ROS to the development of neuroendocrine alterations in a rat model of chronic psychosocial stress, the social isolation.. Significant elevations in the hypothalamic levels of corticotropin-releasing factor and plasmatic adrenocorticotropic hormone were observed from 4 weeks of social isolation. Increased levels of peripheral markers of the HPA-axis (plasmatic and salivary corticosterone) were observed at a later time point of social isolation (7 weeks). Alteration in the exploratory activity of isolated rats followed the same time course. Increased expression of markers of oxidative stress (8-hydroxy-2-deoxyguanosine [8OhdG] and nitrotyrosine) and NOX2 mRNA was early detectable in the hypothalamus of isolated rats (after 2 weeks), but later (after 7 weeks) in the adrenal gland. A 3-week treatment with the antioxidant/NOX inhibitor apocynin stopped the progression of isolation-induced alterations of the HPA-axis. Rats with a loss-of-function mutation in the NOX2 subunit p47(phox) were totally protected from the alterations of the neuroendocrine profile, behavior, and increased NOX2 mRNA expression induced by social isolation.. We demonstrate that psychosocial stress induces early elevation of NOX2-derived oxidative stress in the hypothalamus and consequent alterations of the HPA-axis, leading ultimately to an altered behavior.. Pharmacological targeting of NOX2 might be of crucial importance for the treatment of psychosocial stress-induced psychosis.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Acetophenones; Adrenal Glands; Adrenocorticotropic Hormone; Animals; Antioxidants; Biomarkers; Corticosterone; Deoxyguanosine; Female; Hypothalamo-Hypophyseal System; Hypothalamus; Male; Mutation; NADPH Oxidases; Neurosecretory Systems; Oxidative Stress; Pituitary-Adrenal System; Psychosocial Deprivation; Psychotic Disorders; Rats; Rats, Wistar; Restraint, Physical; Saliva; Social Isolation; Stress, Psychological; Tyrosine

2013
Protective effect of apocynin, a NADPH-oxidase inhibitor, against contrast-induced nephropathy in the diabetic rats: a comparison with n-acetylcysteine.
    European journal of pharmacology, 2012, Jan-15, Volume: 674, Issue:2-3

    The aim of this study was to investigate the effects of apocynin, a NADPH (nicotinamide adenine dinucleotide phosphate)-oxidase inhibitor, in diabetic rats with nephropathy induced by contrast medium (CIN). Diabetes was induced in male Wistar rats by a single dose of streptozotocin (60 mg/kg i.v.). Animals were then divided into the following groups: 1) control group (diabetic rats treated i.v. with saline solution); 2) iomeprol group (iomeprol at 10 ml/kg was injected i.v. 30 min after saline administration); 3) apocynin group (identical to the iomeprol group, except for pre-treatment with apocynin 5mg/kg i.v., 30 min before iomeprol injection) and 4) N-acetylcysteine group (NAC) (same as iomeprol group, except for the treatment with NAC 20 mg/kg i.v. 30 min before iomeprol injection). CIN in animals were assessed 24h after administration of iomeprol. Apocynin significantly attenuates the impaired glomerular function, concentration of Na(+), K(+), alpha glutathione S-transferase levels in urine and neutrophil gelatinase-associated lipocalin levels in plasma caused by iomeprol. In kidney, immunohistochemical analysis of some inflammatory mediators, such as nitrotyrosine, poly-ADP-ribosyl polymerase, tumor necrosis factor-α, interleukin-1β as well as apoptosis (evaluated as terminal deoxynucleotidyltransferase-mediated UTP end labeling assay) revealed positive staining in tissue obtained from iomeprol group. These parameters were markedly reduced in animals treated with apocynin. Similarly, these parameters were also markedly modified by NAC pre-treatment. Here, we have shown that apocynin attenuates the degree of iomeprol-induced nephropathy in diabetic rats.

    Topics: Acetophenones; Acetylcysteine; Acute-Phase Proteins; Animals; Apoptosis; Contrast Media; Cytosine; Diabetic Nephropathies; Enzyme Activation; Enzyme Inhibitors; Glutathione Transferase; Iopamidol; Isoenzymes; Kidney Glomerulus; Lipocalin-2; Lipocalins; Male; NADPH Oxidases; Poly(ADP-ribose) Polymerases; Potassium; Proto-Oncogene Proteins; Rats; Rats, Wistar; Sodium; Time Factors; Tyrosine

2012
Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn.
    American journal of physiology. Lung cellular and molecular physiology, 2012, Mar-15, Volume: 302, Issue:6

    NADPH oxidase is a major source of superoxide anions in the pulmonary arteries (PA). We previously reported that intratracheal SOD improves oxygenation and restores endothelial nitric oxide (NO) synthase (eNOS) function in lambs with persistent pulmonary hypertension of the newborn (PPHN). In this study, we determined the effects of the NADPH oxidase inhibitor apocynin on oxygenation, reactive oxygen species (ROS) levels, and NO signaling in PPHN lambs. PPHN was induced in lambs by antenatal ligation of the ductus arteriosus 9 days prior to delivery. Lambs were treated with vehicle or apocynin (3 mg/kg intratracheally) at birth and then ventilated with 100% O(2) for 24 h. A significant improvement in oxygenation was observed in apocynin-treated lambs after 24 h of ventilation. Contractility of isolated fifth-generation PA to norepinephrine was attenuated in apocynin-treated lambs. PA constrictions to NO synthase (NOS) inhibition with N-nitro-l-arginine were blunted in PPHN lambs; apocynin restored contractility to N-nitro-l-arginine, suggesting increased NOS activity. Intratracheal apocynin also enhanced PA relaxations to the eNOS activator A-23187 and to the NO donor S-nitrosyl-N-acetyl-penicillamine. Apocynin decreased the interaction between NADPH oxidase subunits p22(phox) and p47(phox) and decreased the expression of Nox2 and p22(phox) in ventilated PPHN lungs. These findings were associated with decreased superoxide and 3-nitrotyrosine levels in the PA of apocynin-treated PPHN lambs. eNOS protein expression, endothelial NO levels, and tetrahydrobiopterin-to-dihydrobiopterin ratios were significantly increased in PA from apocynin-treated lambs, although cGMP levels did not significantly increase and phosphodiesterase-5 activity did not significantly decrease. NADPH oxidase inhibition with apocynin may improve oxygenation, in part, by attenuating ROS-mediated vasoconstriction and by increasing NOS activity.

    Topics: Acetophenones; Animals; Animals, Newborn; Biopterins; Cyclic GMP; Cyclic Nucleotide Phosphodiesterases, Type 5; Endothelium, Vascular; Hypertension, Pulmonary; Lung; NADPH Oxidases; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Norepinephrine; Pulmonary Artery; Reactive Oxygen Species; Sheep; Superoxides; Tyrosine; Vasoconstriction; Vasodilation

2012
The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury.
    American journal of physiology. Endocrinology and metabolism, 2012, Oct-01, Volume: 303, Issue:7

    The receptor for advanced glycation end products (RAGE) and thioredoxin (Trx) play opposing roles in diabetic myocardial ischemia-reperfusion (MI/R) injury. We recently demonstrated nitrative modification of Trx leads to its inactivation and loss of cardioprotection. The present study is to determine the relationship between augmented RAGE expression and diminished Trx activity pertaining to exacerbated MI/R injury in the diabetic heart. The diabetic state was induced in mice by multiple intraperitoneal low-dose streptozotocin injections. RAGE small-interfering RNA (siRNA) or soluble RAGE (sRAGE, a RAGE decoy) was via intramyocardial and intraperitoneal injection before MI/R, respectively. Mice were subjected to 30 min of myocardial infarction followed by 3 or 24 h of reperfusion. At 10 min before reperfusion, diabetic mice were randomized to receive EUK134 (peroxynitrite scavenger), recombinant hTrx-1, nitrated Trx-1, apocynin (a NADPH oxidase inhibitor), or 1400W [an inducible nitric oxide synthase (iNOS) inhibitor] administration. The diabetic heart manifested increased RAGE expression and N(ε)-(carboxymethyl)lysine (CML, major advanced glycation end product subtype) content, reduced Trx-1 activity, and increased Trx nitration after MI/R. RAGE siRNA or administration of sRAGE in diabetic mice decreased MI/R-induced iNOS and gp91(phox) expression, reduced Trx nitration, preserved Trx activity, and decreased infarct size. Apocynin or 1400W significantly decreased nitrotyrosine production and restored Trx activity. Conversely, administration of either EUK134 or reduced hTrx, but not nitrated hTrx, attenuated MI/R-induced superoxide production, RAGE expression, and CML content and decreased cardiomyocyte apoptosis in diabetic mice. Collectively, we demonstrate that RAGE modulates the MI/R injury in a Trx nitrative inactivation fashion. Conversely, nitrative modification of Trx blocked its inhibitory effect upon RAGE expression in the diabetic heart. This is the first direct evidence demonstrating the alternative cross talk between RAGE overexpression and nitrative Trx inactivation, suggesting that interventions interfering with their interaction may be novel means of mitigating diabetic MI/R injury.

    Topics: Acetophenones; Animals; Diabetes Mellitus, Experimental; Enzyme Inhibitors; Free Radical Scavengers; Imines; Lysine; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Myocardial Reperfusion Injury; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide Synthase Type II; Organometallic Compounds; Receptor for Advanced Glycation End Products; Receptors, Immunologic; RNA, Small Interfering; Salicylates; Superoxides; Thioredoxins; Tyrosine

2012
Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson's disease.
    Journal of neuroinflammation, 2012, Oct-23, Volume: 9

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by progressive motor debilitation, which affects several million people worldwide. Recent evidence suggests that glial cell activation and its inflammatory response may contribute to the progressive degeneration of dopaminergic neurons in PD. Currently, there are no neuroprotective agents available that can effectively slow the disease progression. Herein, we evaluated the anti-inflammatory and antioxidant efficacy of diapocynin, an oxidative metabolite of the naturally occurring agent apocynin, in a pre-clinical 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD.. Both pre-treatment and post-treatment of diapocynin were tested in the MPTP mouse model of PD. Diapocynin was administered via oral gavage to MPTP-treated mice. Following the treatment, behavioral, neurochemical and immunohistological studies were performed. Neuroinflammatory markers, such as ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), gp91phox and inducible nitric oxide synthase (iNOS), were measured in the nigrostriatal system. Nigral tyrosine hydroxylase (TH)-positive neurons as well as oxidative markers 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE) and striatal dopamine levels were quantified for assessment of the neuroprotective efficacy of diapocynin.. Oral administration of diapocynin significantly attenuated MPTP-induced microglial and astroglial cell activation in the substantia nigra (SN). MPTP-induced expression of gp91phox and iNOS activation in the glial cells of SN was also completely blocked by diapocynin. Notably, diapocynin markedly inhibited MPTP-induced oxidative markers including 3-NT and 4-HNE levels in the SN. Treatment with diapocynin also significantly improved locomotor activity, restored dopamine and its metabolites, and protected dopaminergic neurons and their nerve terminals in this pre-clinical model of PD. Importantly, diapocynin administered 3 days after initiation of the disease restored the neurochemical deficits. Diapocynin also halted the disease progression in a chronic mouse model of PD.. Collectively, these results demonstrate that diapocynin exhibits profound neuroprotective effects in a pre-clinical animal model of PD by attenuating oxidative damage and neuroinflammatory responses. These findings may have important translational implications for treating PD patients.

    Topics: Acetophenones; Animals; Anti-Inflammatory Agents; Biphenyl Compounds; Chromatography, High Pressure Liquid; Corpus Striatum; Disease Models, Animal; Disease Progression; Dopamine; Dopaminergic Neurons; Dose-Response Relationship, Drug; Encephalitis; Fluoresceins; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Motor Activity; MPTP Poisoning; NADPH Oxidases; Neuroglia; Neuroprotective Agents; Neurotransmitter Agents; Nitric Oxide Synthase Type II; Organic Chemicals; Tyrosine; Tyrosine 3-Monooxygenase

2012
Effect of Apocynin, an inhibitor of NADPH oxidase, in the inflammatory process induced by an experimental model of spinal cord injury.
    Free radical research, 2011, Volume: 45, Issue:2

    NADPH-oxidase is an enzyme responsible for reactive oxygen species production, and inhibition of this enzyme represents an attractive therapeutic target for the treatment of many diseases. The aim of this study was to investigate the effects of Apocynin, NADPH-oxidase inhibitor, in the modulation of secondary injury in the spinal cord. The injury was induced by application of vascular clips to the dura via a four-level T5-T8 laminectomy in mice. Treatment with Apocynin 1 and 6 h after the trauma significantly decreased (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration, (3) adhesion molecule expression, (4) nuclear transcription factor-κB expression, (5) nitrotyrosine and poly-ADP-ribose formation, (6) pro-inflammatory cytokines production, (7) apoptosis and (8) mitogen-activated protein kinase activation. Moreover, Apocynin significantly ameliorated the loss of limb function (evaluated by motor recovery score). Thus, it is proposed that Apocynin may be useful in the treatment of inflammation associated with spinal cord trauma.

    Topics: Acetophenones; Animals; Apoptosis; Cell Adhesion Molecules; Cytokines; Gene Expression; Immunohistochemistry; Laminectomy; Male; Mice; Mitogen-Activated Protein Kinases; Models, Animal; Motor Activity; Myelitis; NADPH Oxidases; Neutrophil Infiltration; NF-kappa B; Poly Adenosine Diphosphate Ribose; Reactive Oxygen Species; Recovery of Function; Signal Transduction; Spinal Cord; Spinal Cord Injuries; Tyrosine

2011
Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats.
    Brain research, 2011, Feb-04, Volume: 1372

    NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. The aim of this study is identifying apocynin as a critical modulator of NADPH oxidase and elucidating its role as a neuroprotectant in an experimental model of brain ischemia in rat. Treatment of apocynin 5min before of reperfusion attenuated cerebral ischemia in rats. Administration of apocynin showed marked reduction in infarct size compared with that of control rats. Medial carotid artery occlusion (MCAo)-induced cerebral ischemia was also associated with an increase in, nitrotyrosine formation, as well as IL-1β expression, IκB degradation and ICAM expression in ischemic regions. These expressions were markedly inhibited by the treatment of apocynin. We also demonstrated that apocynin reduces levels of apoptosis (TUNEL, Bax and Bcl-2 expression) resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. This new understanding of apocynin induced adaptation to ischemic stress and inflammation could suggest novel avenues for clinical intervention during ischemic and inflammatory diseases.

    Topics: Acetophenones; Animals; Apoptosis; bcl-2-Associated X Protein; Brain; Cytochromes c; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; I-kappa B Proteins; In Situ Nick-End Labeling; Infarction, Middle Cerebral Artery; Intercellular Adhesion Molecule-1; Interleukin-1beta; Male; NADPH Oxidases; Neurologic Examination; Peptide Fragments; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Wistar; Reperfusion Injury; Tyrosine

2011
Differential effects of NADPH oxidase and xanthine oxidase inhibition on sympathetic reinnervation in postinfarct rat hearts.
    Free radical biology & medicine, 2011, Jun-01, Volume: 50, Issue:11

    Superoxide has been shown to play a major role in ventricular remodeling and arrhythmias after myocardial infarction. However, the source of increased myocardial superoxide production and the role of superoxide in sympathetic innervation remain to be further characterized. Male Wistar rats, after coronary artery ligation, were randomized to vehicle, allopurinol, or apocynin for 4weeks. To determine the role of peroxynitrite in sympathetic reinnervation, we also used 3-morpholinosydnonimine (a peroxynitrite generator). The postinfarction period was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine, xanthine oxidase activity, NADPH oxidase activity, and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Sympathetic hyperinnervation was blunted after administration of allopurinol. Arrhythmic scores in the allopurinol-treated infarcted rats were significantly lower than those in vehicle. For similar levels of ventricular remodeling, apocynin had no beneficial effects on oxidative stress, sympathetic hyperinnervation, or arrhythmia vulnerability. Allopurinol-treated hearts had significantly decreased nerve growth factor expression, which was substantially increased after coadministration of 3-morpholinosydnonimine. These results indicate that xanthine oxidase but not NADPH oxidase largely mediates superoxide production after myocardial infarction. Xanthine oxidase inhibition ameliorates sympathetic innervation and arrhythmias possibly via inhibition of the peroxynitrite-mediated nerve growth factor pathway.

    Topics: Acetophenones; Allopurinol; Animals; Arrhythmias, Cardiac; Coronary Vessels; Ethidium; Male; Molsidomine; Myocardial Infarction; Myocardium; NADPH Oxidases; Nerve Growth Factor; Oxidative Stress; Peroxynitrous Acid; Rats; Rats, Wistar; Superoxides; Sympathetic Nervous System; Tyrosine; Xanthine Oxidase

2011
NOX2, p22phox and p47phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2011, Volume: 27, Issue:5

    NADPH oxidases play an essential role in reactive oxygen species (ROS)-based signaling in the heart. Previously, we have demonstrated that (peri)nuclear expression of the catalytic NADPH oxidase subunit NOX2 in stressed cardiomyocytes, e.g. under ischemia or high concentrations of homocysteine, is an important step in the induction of apoptosis in these cells. Here this ischemia-induced nuclear targeting and activation of NOX2 was specified in cardiomyocytes.. The effect of ischemia, mimicked by metabolic inhibition, on nuclear localization of NOX2 and the NADPH oxidase subunits p22(phox) and p47(phox), was analyzed in rat neonatal cardiomyoblasts (H9c2 cells) using Western blot, immuno-electron microscopy and digital-imaging microscopy.. NOX2 expression significantly increased in nuclear fractions of ischemic H9c2 cells. In addition, in these cells NOX2 was found to colocalize in the nuclear envelope with nuclear pore complexes, p22(phox), p47(phox) and nitrotyrosine residues, a marker for the generation of ROS. Inhibition of NADPH oxidase activity, with apocynin and DPI, significantly reduced (peri)nuclear expression of nitrotyrosine.. We for the first time show that NOX2, p22(phox) and p47(phox) are targeted to and produce ROS at the nuclear pore complex in ischemic cardiomyocytes.

    Topics: Acetophenones; Animals; Apoptosis; Blotting, Western; Cells, Cultured; Enzyme Inhibitors; Gene Expression; Ischemia; Membrane Glycoproteins; Microscopy, Immunoelectron; Myocytes, Cardiac; NADPH Oxidase 2; NADPH Oxidases; Nuclear Pore; Onium Compounds; Rats; Reactive Oxygen Species; Signal Transduction; Sodium Cyanide; Tyrosine

2011
NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart.
    American journal of physiology. Heart and circulatory physiology, 2009, Volume: 296, Issue:3

    Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.

    Topics: Acetophenones; Acetylcholine; Aldehydes; Animals; Antioxidants; Cardiac Pacing, Artificial; Coronary Circulation; Coronary Vessels; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Female; Heart Failure; Hemodynamics; Male; NADPH Oxidases; Oxidative Stress; RNA, Messenger; Superoxides; Tyrosine; Up-Regulation; Vasodilation; Vasodilator Agents

2009
Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase.
    The Journal of physiology, 2009, Jul-01, Volume: 587, Issue:Pt 13

    Habitual aerobic exercise is associated with enhanced endothelium-dependent dilatation (EDD) in older humans, possibly by increasing nitric oxide bioavailability and reducing oxidative stress. However, the mechanisms involved are incompletely understood. EDD was measured in young (6-8 months) and old (29-32 months) cage control and voluntary wheel running (VR) B6D2F1 mice. Age-related reductions in maximal carotid artery EDD to acetylcholine (74 vs. 96%, P < 0.01) and the nitric oxide (NO) component of EDD (maximum dilatation with ACh and l-NAME minus that with ACh alone was -28% vs. -55%, P < 0.01) were restored in old VR (EDD: 96%, NO: -46%). Nitrotyrosine, a marker of oxidative stress, was increased in aorta with age, but was markedly lower in old VR (P < 0.05). Aortic superoxide dismutase (SOD) activity was greater (P < 0.01), whereas NADPH oxidase protein expression (P < 0.01) and activity (P = 0.05) were lower in old VR vs. old cage control. Increasing SOD (with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and inhibition of NADPH oxidase (with apocynin) improved EDD and its NO component in old cage control, but not old VR mice. VR increased endothelial NO synthase (eNOS) protein expression (P < 0.05) and activation (Ser1177 phosphorylation) (P < 0.05) in old mice. VR did not affect EDD in young mice. Our results show that voluntary aerobic exercise restores the age-associated loss of EDD by suppression of oxidative stress via stimulation of SOD antioxidant activity and inhibition of NADPH oxidase superoxide production. Increased eNOS protein and activation also may contribute to exercise-mediated preservation of NO bioavailability and EDD with ageing.

    Topics: Acetophenones; Acetylcholine; Aging; Animals; Carotid Arteries; Down-Regulation; Endothelium, Vascular; In Vitro Techniques; Male; Mice; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; Physical Exertion; Superoxide Dismutase; Tyrosine; Vasodilation

2009
Run for your life: exercise, oxidative stress and the ageing endothelium.
    The Journal of physiology, 2009, Sep-01, Volume: 587, Issue:Pt 17

    Topics: Acetophenones; Acetylcholine; Aging; Animals; Carotid Arteries; Down-Regulation; Endothelium, Vascular; Male; Mice; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; Physical Exertion; Superoxide Dismutase; Tyrosine; Vasodilation

2009
Intermittent hypoxia has organ-specific effects on oxidative stress.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2008, Volume: 295, Issue:4

    Obstructive sleep apnea is characterized by upper airway collapse, leading to intermittent hypoxia (IH). It has been postulated that IH-induced oxidative stress may contribute to several chronic diseases associated with obstructive sleep apnea. We hypothesize that IH induces systemic oxidative stress by upregulating NADPH oxidase, a superoxide-generating enzyme. NADPH oxidase is regulated by a cytosolic p47(phox) subunit, which becomes phosphorylated during enzyme activation. Male C57BL/6J mice were exposed to IH with an inspired O(2) fraction nadir of 5% 60 times/h during the 12-h light phase (9 AM-9 PM) for 1 or 4 wk. In the aorta and heart, IH did not affect lipid peroxidation [malondialdehyde (MDA) level], nitrotyrosine level, or p47(phox) expression and phosphorylation. In contrast, in the liver, exposure to IH for 1 wk resulted in a trend to an increase in MDA levels, whereas IH for 4 wk resulted in a 38% increase in MDA levels accompanied by upregulation of p47(phox) expression and phosphorylation. Administration of an NADPH oxidase inhibitor, apocynin, during IH exposure attenuated IH-induced increases in hepatic MDA. In p47(phox)-deficient mice, MDA levels were higher at baseline and, unexpectedly, decreased during IH. In conclusion, oxidative stress levels and pathways under IH conditions are organ and duration specific.

    Topics: Acetophenones; Animals; Body Weight; Eating; Enzyme Inhibitors; Erythrocytes; Glutathione; Glutathione Disulfide; Hypoxia; Lipid Peroxidation; Lipoproteins, LDL; Liver; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidases; Oxidative Stress; Phosphorylation; Superoxide Dismutase; Tyrosine

2008
Antioxidant treatment normalizes nitric oxide production, renal sodium handling and blood pressure in experimental hyperleptinemia.
    Life sciences, 2005, Aug-26, Volume: 77, Issue:15

    Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.

    Topics: Acetophenones; Aconitate Hydratase; Aldehydes; Animals; Antioxidants; Blood Pressure; Body Weight; Creatine; Cyclic GMP; Cyclic N-Oxides; Drinking; Eating; Hypertension; Isoprostanes; Kidney; Leptin; Male; Malondialdehyde; Natriuresis; Nitric Oxide; Rats; Rats, Wistar; Reactive Nitrogen Species; Sodium; Spin Labels; Tyrosine

2005
Supplementation with tetrahydrobiopterin prevents the cardiovascular effects of angiotensin II-induced oxidative and nitrosative stress.
    Journal of hypertension, 2005, Volume: 23, Issue:7

    The pteridine cofactor tetrahydrobiopterin (BH4) has emerged as a critical determinant of endothelial nitric oxide synthase (eNOS) activity. When BH4 availability is limited, eNOS does not produce nitric oxide (NO) but instead generates superoxide. BH4 may reverse endothelial dysfunction due to cardiovascular disease, including atherosclerosis, coronary artery disease and hypertension. In this study, the influence of BH4 on cardiovascular parameters and the production of free radicals following angiotensin II (Ang II) infusion was assessed.. BH4 (20 mg/kg per day in drinking water) was administered with Ang II (300 ng/kg per min subcutaneously, osmotic pump) for 7 days in Sprague-Dawley rats. In addition, BH4 was also given in vehicle-infused rats.. Treatment with BH4 significantly prevented some of the effects of Ang II, such as impaired vascular responses to acetylcholine, hypertension and increases in heart weight index values. Treatment with BH4 also significantly reduced Ang II-induced increases in inducible NO synthase expression, nitrotyrosine immunostaining, NO production and superoxide anion formation in rats.. These results indicate that BH4 might prevent the development of hypertension and myocardial hypertrophy, as well as the Ang II-induced production of superoxide and NO, thereby reducing the production of peroxynitrite. Therefore, BH4 may protect against the cardiovascular manifestations of oxidative and nitrosative stress in this experimental model of Ang II-mediated hypertension.

    Topics: Acetophenones; Angiotensin II; Animals; Antioxidants; Aorta, Thoracic; Biopterins; Cardiomegaly; Disease Models, Animal; Enzyme Inhibitors; Hypertension; Immunohistochemistry; Male; NADPH Oxidases; Nitrates; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitrites; Oxidative Stress; Rats; Rats, Sprague-Dawley; RNA, Messenger; Superoxides; Time Factors; Tyrosine; Up-Regulation

2005
Alterations in redox homeostasis and prostaglandins impair endothelial-dependent vasodilation in euglycemic autoimmune nonobese diabetic mice.
    Free radical biology & medicine, 2005, Oct-15, Volume: 39, Issue:8

    We report herein the novel observation that alterations in oxidant/antioxidant balance are evident and cause vascular dysfunction in aortae of prediabetic nonobese-diabetic mice (NOD). We found that nitrotyrosine, a biochemical marker of oxidant stress, was higher in the NOD aortae when compared to age-matched non-autoimmune BALB/c controls or the diabetes-resistant NOD congenic strain, NOD.Lc7. The oxidant stress was localized to the intimal and medial layers, and endothelium-dependent relaxation to acetylcholine was decreased in isolated aortic rings from NOD mice. Inhibition of nitric oxide synthesis caused an endothelium-dependent contraction, and treatment with either a selective thromboxane A2/prostaglandin H2 receptor antagonist or a non-isozyme-specific cyclooxygenase inhibitor reversed this effect. Aortic rings from NOD.Lc7 did not display the paradoxical vasoconstriction. Furthermore, the vascular dysfunction was caused by oxidative stress, as treatment with a superoxide dismutase mimetic in vivo or with native antioxidant enzymes ex vivo inhibited the tissue oxidant stress and restored endothelium-dependent relaxation. Endothelial function was also restored by the inhibitors of NAD(P)H oxidase, diphenylene iodonium or apocynin. Our studies indicate that an oxidant stress that occurs prior to the onset of diabetes in this mouse model contributes to endothelial dysfunction independently of overt diabetes.

    Topics: Acetophenones; Acetylcholine; Animals; Aorta; Cyclooxygenase Inhibitors; Diabetes Mellitus, Type 1; Endothelium, Vascular; Homeostasis; Mice; Mice, Inbred BALB C; Mice, Inbred NOD; NADPH Oxidases; Nitric Oxide; Onium Compounds; Oxidation-Reduction; Oxidative Stress; Prediabetic State; Prostaglandin-Endoperoxide Synthases; Prostaglandins; Receptors, Thromboxane A2, Prostaglandin H2; Tyrosine; Vasodilation

2005
Apocynin and 1400 W prevents airway hyperresponsiveness during allergic reactions in mice.
    British journal of pharmacology, 2001, Volume: 134, Issue:2

    1. The contribution of reactive nitrogen species to the development of airway hyperresponsiveness in a mouse model of allergic inflammation was investigated by the use of selective inhibitors of nitric oxide and superoxide formation. 2. Sensitized mice, repeatedly challenged with ovalbumin showed a significant (P<0.001, n=9) increase in airway responsiveness measured using whole body plethysmography. This hyperresponsiveness was accompanied by an influx of eosinophils into the airway lumen and increased levels of ovalbumin-specific serum IgE. 3. Treatment of mice with the iNOS inhibitor 1400 W or the NADPH-oxidase inhibitor apocynin did not significantly alter cellular influx into the airway lumen nor serum ovalbumin specific IgE. In contrast, apocynin as well as 1400 W inhibited ovalbumin-induced airway hyperresponsiveness (P<0.001 and P<0.05 respectively, n=9). Furthermore, the airways of allergen challenged animals showed clear 3-nitrotyrosine staining, which was mainly located in eosinophils. Remarkably, treatment with apocynin or 1400 W did not alter 3-nitrotyrosine staining. 4. These data suggest that the development of airway hyperresponsiveness during the airway inflammation upon ovalbumin challenge is dependent on the release of both superoxide and nitric oxide and is therefore likely to be dependent on reactive nitrogen species. This mechanism, however, is not reflected by 3-nitrotyrosine formation in the airways.

    Topics: Acetophenones; Amidines; Animals; Antioxidants; Benzylamines; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Enzyme Inhibitors; Eosinophils; Hypersensitivity; Immunoglobulin E; Immunohistochemistry; Interferon-gamma; Interleukin-4; Interleukin-5; Lung; Male; Mice; Mice, Inbred BALB C; Neutrophils; Nitric Oxide Synthase; Ovalbumin; Specific Pathogen-Free Organisms; Tyrosine

2001
Apocynin improves diaphragmatic function after endotoxin administration.
    Journal of applied physiology (Bethesda, Md. : 1985), 1999, Volume: 87, Issue:2

    Free radicals are known to play an important role in modulating the development of respiratory muscle dysfunction during sepsis. Moreover, neutrophil numbers increase in the diaphragm after endotoxin administration. Whether or not superoxide derived from infiltrating white blood cells contributes to muscle dysfunction during sepsis is, however, unknown. The purpose of the present study was to examine the effect of apocynin, an inhibitor of the superoxide-generating neutrophil NADPH complex, on endotoxin-induced diaphragmatic dysfunction. We studied groups of rats given saline, endotoxin, apocynin, or both endotoxin and apocynin. Animals were killed 18 h after injection, a portion of the diaphragm was used to assess force generation, and the remaining diaphragm was used for determination of 4-hydroxynonenal (a marker of lipid peroxidation) and nitrotyrosine levels (a marker of free radical-mediated protein modification). We found that endotoxin reduced diaphragm force generation and that apocynin partially prevented this decrease [e.g., force in response to 20 Hz was 23 +/- 1 (SE), 12 +/- 2, 23 +/- 1, and 19 +/- 1 N/cm(2), respectively, for saline, endotoxin, apocynin, and endotoxin/apocynin groups; P < 0.001]. Apocynin also prevented endotoxin-mediated increases in diaphragm 4-hydroxynonenal and nitrotyrosine levels (P < 0.01). These data suggest that neutrophil-derived free radicals contribute to diaphragmatic dysfunction during sepsis.

    Topics: Acetophenones; Aldehydes; Animals; Antioxidants; Diaphragm; Endotoxins; Histocytochemistry; Immunoblotting; Kinetics; Lipid Peroxidation; Male; Muscle Contraction; Neutrophils; Rats; Rats, Sprague-Dawley; Tyrosine

1999