3-nitrotyrosine and 3-tyrosine

3-nitrotyrosine has been researched along with 3-tyrosine* in 4 studies

Other Studies

4 other study(ies) available for 3-nitrotyrosine and 3-tyrosine

ArticleYear
New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.
    Fitoterapia, 2016, Volume: 109

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Allantoin; Animals; Antioxidants; Chromatography, High Pressure Liquid; Curcuma; Deoxyguanosine; Female; Male; Mass Spectrometry; Metabolomics; Methylamines; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Tyrosine

2016
Comparison of fluorescence reagents for simultaneous determination of hydroxylated phenylalanine and nitrated tyrosine by high-performance liquid chromatography with fluorescence detection.
    Biomedical chromatography : BMC, 2012, Volume: 26, Issue:1

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well-known and important contributors to oxidative and nitrosative stress in several diseases. Hydroxylated phenylalanine and nitrated tyrosine products appear to be particularly susceptible targets of oxidative and nitrosative stress. We compared fluorescence reagents for their potential use in the analysis of hydroxylated phenylalanine and nitrated tyrosine products with a high-sensitivity and high-specificity HPLC-UV-FL technique. The analytes were extracted from serum via solid-phase extraction on Waters Oasis MCX cartridges. Chromatographic separation was achieved on an ODS column (Capcell Pak MG II; 150 × 2.0 mm) using a gradient mobile phase consisting of 20 mm sodium phosphate buffer (adjusted to pH 3.0) and acetonitrile. The method quantification limit for 4-nitrophenylalanine, m-tyrosine, and 3-nitrotyrosine was 0.1 μm. The relative standard deviation of the precision and accuracy was acceptable at the spiked concentration of 0.1 μm for 4-nitrophenylalanine, m-tyrosine and 3-nitrotyrosine. The method could be used for the in vitro analysis of serum samples.

    Topics: Chromatography, High Pressure Liquid; Fluorescent Dyes; Humans; Hydrogen Peroxide; Hydrogen-Ion Concentration; Limit of Detection; Peroxynitrous Acid; Phenylalanine; Reproducibility of Results; Solid Phase Extraction; Spectrometry, Fluorescence; Tyrosine

2012
A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease.
    The Journal of clinical investigation, 2001, Volume: 107, Issue:7

    Recent evidence argues strongly that the marked increase in risk for atherosclerotic heart disease seen in diabetics cannot be explained by a generalized increase in oxidative stress. Here, we used streptozotocin to induce hyperglycemia in cynomolgus monkeys for 6 months and tested whether high glucose levels promote localized oxidative damage to artery wall proteins. We focused on three potential agents of oxidative damage: hydroxyl radical, tyrosyl radical, and reactive nitrogen species. To determine which pathways operate in vivo, we quantified four stable end products of these reactants -- ortho-tyrosine, meta-tyrosine, o,o'-dityrosine, and 3-nitrotyrosine -- in aortic proteins. Levels of ortho-tyrosine, meta-tyrosine, and o,o'-dityrosine, but not of 3-nitrotyrosine, were significantly higher in aortic tissue of hyperglycemic animals. Of the oxidative agents we tested, only hydroxyl radical mimicked this pattern of oxidized amino acids. Moreover, tissue levels of ortho-tyrosine and meta-tyrosine correlated strongly with serum levels of glycated hemoglobin, a measure of glycemic control. We conclude that short-term hyperglycemia in primates promotes oxidation of artery wall proteins by a species that resembles hydroxyl radical. Our observations suggest that glycoxidation reactions in the arterial microenvironment contribute to early diabetic vascular disease, raising the possibility that antioxidant therapies might interrupt this process.

    Topics: Animals; Aorta; Arteriosclerosis; Diabetes Mellitus, Experimental; Glucose; Glycated Hemoglobin; Hydroxyl Radical; Lipids; Macaca fascicularis; Male; Mass Spectrometry; Oxidation-Reduction; Time Factors; Tyrosine

2001
Structure--activity studies for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid receptors: acidic hydroxyphenylalanines.
    Journal of medicinal chemistry, 1997, Sep-26, Volume: 40, Issue:20

    Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA >> kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.

    Topics: Animals; Binding, Competitive; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Isomerism; Models, Chemical; N-Methylaspartate; Phencyclidine; Quinoxalines; Radioligand Assay; Rats; Receptors, AMPA; Structure-Activity Relationship; Tyrosine

1997