3-methylcholanthrene and deferoxamine

3-methylcholanthrene has been researched along with deferoxamine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19904 (66.67)18.7374
1990's1 (16.67)18.2507
2000's0 (0.00)29.6817
2010's1 (16.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Glen, RC; Lowe, R; Mitchell, JB1
Farber, JL; Kyle, ME; Miccadei, S; Nakae, D1
Farber, JL; Kyle, ME; Nakae, D; Serroni, A1
Farber, JL; Nakae, D; Oakes, JW1
Bonkovsky, HL; Healey, JF; Robinson, JM; Shedlofsky, SI; Sinclair, PR; Swim, AT1
Harada, T; Hiraishi, H; Ito, Y; Ivey, KJ; Ogonuki, H; Razandi, M; Suzuki, Y; Terano, A1

Other Studies

6 other study(ies) available for 3-methylcholanthrene and deferoxamine

ArticleYear
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen.
    Biochemical and biophysical research communications, 1987, Dec-31, Volume: 149, Issue:3

    Topics: Acetaminophen; Animals; Benzoflavones; beta-Naphthoflavone; Carmustine; Catalase; Chlorides; Deferoxamine; Drug Resistance; Ferric Compounds; Ferrous Compounds; Free Radicals; Liver; Male; Mannitol; Methylcholanthrene; Mixed Function Oxygenases; Rats; Rats, Inbred Strains; Superoxide Dismutase

1987
1,3-(2-Chloroethyl)-1-nitrosourea potentiates the toxicity of acetaminophen both in the phenobarbital-induced rat and in hepatocytes cultured from such animals.
    Molecular pharmacology, 1988, Volume: 34, Issue:4

    Topics: Acetaminophen; Acetone; Carmustine; Cell Survival; Deferoxamine; Drug Synergism; Enzyme Induction; Glutathione; Liver; Male; Maleates; Methylcholanthrene; Phenobarbital; Phenylenediamines

1988
Potentiation in the intact rat of the hepatotoxicity of acetaminophen by 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Archives of biochemistry and biophysics, 1988, Volume: 267, Issue:2

    Topics: Acetaminophen; Animals; Carmustine; Chemical and Drug Induced Liver Injury; Deferoxamine; Drug Synergism; Glutathione Reductase; Male; Methylcholanthrene; Rats; Rats, Inbred Strains

1988
Haem synthesis from exogenous 5-aminolaevulinate in cultured chick-embryo hepatocytes. Effects of inducers of cytochromes P-450.
    The Biochemical journal, 1987, Nov-15, Volume: 248, Issue:1

    Topics: Allylisopropylacetamide; Aminolevulinic Acid; Animals; Cells, Cultured; Chick Embryo; Cytochrome P-450 Enzyme System; Deferoxamine; Enzyme Induction; Heme; Levulinic Acids; Liver; Methylcholanthrene; Porphobilinogen; Porphyrins

1987
Role of iron and glutathione redox cycle in acetaminophen-induced cytotoxicity to cultured rat hepatocytes.
    Digestive diseases and sciences, 1994, Volume: 39, Issue:6

    Topics: Acetaminophen; Amitrole; Animals; Carmustine; Catalase; Cells, Cultured; Chromium Radioisotopes; Cytochrome P-450 Enzyme System; Deferoxamine; Glutathione; Glutathione Reductase; Iron; L-Lactate Dehydrogenase; Liver; Male; Maleates; Methylcholanthrene; Oxidation-Reduction; Phenanthrolines; Rats; Rats, Sprague-Dawley

1994