3-methyladenine has been researched along with 7-methylguanine* in 6 studies
6 other study(ies) available for 3-methyladenine and 7-methylguanine
Article | Year |
---|---|
Simultaneous Detection of 3-Nitrotyrosine and 3-Nitro-4-hydroxyphenylacetic Acid in Human Urine by Online SPE LC-MS/MS and Their Association with Oxidative and Methylated DNA Lesions.
Reactive nitrogen species (RNS) can modify proteins at tyrosine and tryptophan residues, and they are involved in the pathogenesis of various human diseases. In this study, we present the first liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method that enables the simultaneous measurement of urinary 3-nitrotyrosine (3-NTYR) and its metabolite 3-nitro-4-hydroxyphenylacetic acid (NHPA). After the addition of stable isotope-labeled internal standards, urine samples were purified and enriched using manual solid-phase extraction (SPE) and HPLC fractionation followed by online SPE LC-MS/MS analysis. The limits of quantification in urine were 3.1 and 2.5 pg/mL for 3-NTYR and NHPA, respectively. Inter- and intraday imprecision was <15%. The mean relative recoveries of 3-NTYR and NHPA in urine were 89-98% and 90-98%, respectively. We further applied this method to 65 urinary samples from healthy subjects. Urinary samples were also analyzed for N-nitrosodimethylamine (NDMA) as well as oxidative and methylated DNA lesions, namely, 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), N7-methylguanine (N7-MeG), and N3-methyladenine (N3-MeA), using reported LC-MS/MS methods. Urinary 3-NTYR and NHPA levels were measured at concentrations of 63.2 ± 51.5 and 77.4 ± 60.8 pg/mL, respectively. Urinary 3-NTYR and NHPA levels were highly correlated with each other and with 8-oxoGua and 8-oxodGuo. Our findings demonstrated that a relationship exists between oxidative and nitrative stress. However, 3-NTYR and NHPA were correlated with N7-MeG and N3-MeA but not with NDMA, suggesting that NDMA may not be a representative biomarker of N-nitroso compounds that are induced by RNS. Topics: 8-Hydroxy-2'-Deoxyguanosine; Adenine; Adult; Chromatography, High Pressure Liquid; Chromatography, Liquid; Deoxyguanosine; Dimethylnitrosamine; DNA Methylation; Guanine; Humans; Limit of Detection; Middle Aged; Nitrophenols; Oxidation-Reduction; Phenylacetates; Solid Phase Extraction; Tandem Mass Spectrometry; Tyrosine; Young Adult | 2015 |
High-resolution Digital Mapping of N-Methylpurines in Human Cells Reveals Modulation of Their Induction and Repair by Nearest-neighbor Nucleotides.
N-Methylpurines (NMPs), including N(7)-methylguanine (7MeG) and N(3)-methyladenine (3MeA), can be induced by environmental methylating agents, chemotherapeutics, and natural cellular methyl donors. In human cells, NMPs are repaired by the multi-step base excision repair pathway initiated by human alkyladenine glycosylase. Repair of NMPs has been shown to be affected by DNA sequence contexts. However, the nature of the sequence contexts has been poorly understood. We developed a sensitive method, LAF-Seq (Lesion-Adjoining Fragment Sequencing), which allows nucleotide-resolution digital mapping of DNA damage and repair in multiple genomic fragments of interest in human cells. We also developed a strategy that allows accurate measurement of the excision kinetics of NMP bases in vitro. We demonstrate that 3MeAs are induced to a much lower level by the SN2 methylating agent dimethyl sulfate and repaired much faster than 7MeGs in human fibroblasts. Induction of 7MeGs by dimethyl sulfate is affected by nearest-neighbor nucleotides, being enhanced at sites neighbored by a G or T on the 3' side, but impaired at sites neighbored by a G on the 5' side. Repair of 7MeGs is also affected by nearest-neighbor nucleotides, being slow if the lesions are between purines, especially Gs, and fast if the lesions are between pyrimidines, especially Ts. Excision of 7MeG bases from the DNA backbone by human alkyladenine glycosylase in vitro is similarly affected by nearest-neighbor nucleotides, suggesting that the effect of nearest-neighbor nucleotides on repair of 7MeGs in the cells is primarily achieved by modulating the initial step of the base excision repair process. Topics: Adenine; Cell Line; DNA Repair; Fibroblasts; Guanine; Humans; Sulfuric Acid Esters | 2015 |
Direct analysis of tobacco-specific nitrosamine NNK and its metabolite NNAL in human urine by LC-MS/MS: evidence of linkage to methylated DNA lesions.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its urinary metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are the most investigated carcinogenic biomarkers of tobacco-specific nitrosamines. Here, we report the development of a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure urinary NNK and NNAL. With the use of isotope internal standards and online solid-phase extraction, urine samples were directly analyzed without prior sample purification. The detection limits of this method were 0.13 and 0.19 pg on column for NNK and NNAL, respectively. Inter- and intra-day imprecision was <10 %. Mean recovery of NNK and NNAL in urine was 99-100 %. This method was applied to measure urinary NNK and NNAL in 101 smokers and 40 nonsmokers to assess tobacco exposure. Urinary nicotine, cotinine, N3-methyladenine (N3-MeA), and N7-methylguanine (N7-MeG) were also measured by isotope-dilution LC-MS/MS methods. The results showed that urinary NNK was not observed in all smokers. Urinary free NNAL (0.10 ± 0.09 ng/mg creatinine) and total NNAL (0.17 ± 0.14 ng/mg creatinine) were detected in all smokers. Urinary concentrations of NNAL were significantly correlated with nicotine, cotinine, N3-MeA, and N7-MeG in smokers (P < 0.001). This method enables the direct and simultaneous measurement of NNK and NNAL in urine using only 50 μL of urine. This study first demonstrated in human that urinary tobacco-specific nitrosamines metabolite (NNAL) are highly correlated with their resulting methylated DNA lesions in urine, which may help to substantiate an increased cancer risk associated with tobacco smoke exposure. Topics: Adenine; Adult; Biomarkers; Chromatography, Liquid; Cotinine; DNA Methylation; Guanine; Humans; Limit of Detection; Nicotine; Nitrosamines; Pyridines; Sensitivity and Specificity; Smoking; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2014 |
The substrate binding interface of alkylpurine DNA glycosylase AlkD.
Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture. Topics: Adenine; Catalytic Domain; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; Guanine; Models, Molecular; Mutation; Protein Conformation; Protein Structure, Secondary; Protein Structure, Tertiary; Substrate Specificity | 2014 |
Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients.
Global analyses of DNA methylation contribute important insights into biology and the wide-ranging role of DNA methylation. We describe the use of online solid-phase extraction and isotope-dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of 5-methyl-2'-deoxycytidine (5-medC) and 2'-deoxycytidine (dC) in DNA. With the incorporation of isotope internal standards and online enrichment techniques, the detection limit of this method was estimated to be as low as 0.065 pg which enables human global DNA methylation detection using only picogram amounts of DNA. This method was applied to assess the optimal amounts of enzymes required for DNA digestion regarding an accurate global DNA methylation determination and completeness of digestion and to determine global methylation in human tumor adjacent lung tissue of 79 lung cancer patients. We further determined methylated (N7-methylguanine (N7-meG), O (6)-methylguanine (O (6)-meG), and N3-methyladenine (N3-meA)) and oxidized DNA lesions (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) in lung cancer patients by LC-MS/MS. Optimization experiments revealed that dC was liberated from DNA much more readily than 5-medC by nuclease P1 and alkaline phosphatase (AP) in DNA, which could lead to an error in the global DNA methylation measurement following digestion with insufficient enzymes. Nuclease P1 showed more differential activity for 5-medC and dC than AP. Global DNA methylation levels in adenocarcinoma and squamous cell carcinoma patients were similar in the range of 3.16-4.01 %. Global DNA methylation levels were not affected by smoking and gender and were not correlated with N7-meG or 8-oxodG in lung cancer patients. Levels of O (6)-meG and N3-meA were however found to be undetectable in all lung tissue samples. Topics: Adenine; Adenocarcinoma; Aged; Carcinoma, Squamous Cell; Chromatography, Liquid; Deoxycytidine; DNA Methylation; DNA, Neoplasm; Female; Fungal Proteins; Guanine; Humans; Indicator Dilution Techniques; Limit of Detection; Lung Neoplasms; Male; Middle Aged; Reproducibility of Results; Single-Strand Specific DNA and RNA Endonucleases; Solid Phase Extraction; Tandem Mass Spectrometry; Tumor Microenvironment | 2013 |
Direct-acting DNA alkylating agents present in aqueous extracts of areca nut and its products.
Areca nut is a carcinogen to humans and has been strongly associated with oral premalignant and malignant diseases. Previous studies speculated the presence of unknown direct-acting mutagens present in aqueous extracts of areca nut. We hypothesized whether any direct-acting alkylating agents are present in areca nut and its commercial products. In this study, calf thymus DNA was treated with four different aqueous extracts obtained from unripe and ripe areca nuts or their commercial products, namely, pan masala (without tobacco) and gutkha (with tobacco). Three N-alkylated purines including N7-methylguanine (N7-MeG), N3-methyladenine (N3-MeA), and N7-ethylguanine (N7-EtG) were detected using sensitive and specific isotope-dilution liquid chromatography-tandem-mass spectrometry (LC-MS/MS) methods. The results showed that four types of aqueous extracts significantly induced the formation of N7-MeG and N3-MeA in a linear dose-response manner. Extracts from unripe areca nut exhibited higher methylating potency than those of ripe areca nut, while gutkha had higher methylating potency than pan masala. Meanwhile, gutkha made with areca nut and tobacco, was the only extract found to induce the formation of N7-EtG. Overall, this study first demonstrated that the presence of direct-acting alkylating agents in areca nut and its commercial products exist at a level that is able to cause significant DNA damage. Our findings may provide another mechanistic rationale for areca nut-mediated oral carcinogenesis and also highlight the importance and necessity of the identification of these direct-acting alkylating agents. Topics: Adenine; Alkylation; Animals; Areca; Cattle; Chromatography, Liquid; DNA; DNA Damage; Guanine; Molecular Structure; Nuts; Plant Extracts; Tandem Mass Spectrometry; Water | 2012 |