3-methoxytyrosine and methoxyhydroxyphenylglycol

3-methoxytyrosine has been researched along with methoxyhydroxyphenylglycol in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19901 (14.29)18.7374
1990's2 (28.57)18.2507
2000's2 (28.57)29.6817
2010's2 (28.57)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Aguado, EG; de Yebenes, JG; Mena, MA1
Antonin, KH; Bieck, PR; Dostert, P; Farger, G; Nilsson, EB; Schmidt, EK; Strolin Benedetti, M; Waldmeier, PC1
Achilli, G; Banting, A; Banting, S; Le Bars, D; Weil-Fugazza, J1
Bräutigam, C; Hoffman, GF; Hyland, K; Knust, A; Sharma, RK; Wevers, RA1
Kawano, H; Matsushita, H; Ochi, M; Sakai, H; Takeuchi, Y1
Area, E; Artuch, R; Cormand, B; Drakaki, K; Garcia-Cazorla, A; Giannakopoulos, A; Kanavakis, E; Orfanou, I; Ormazabal, A; Pons, R; Ribasés, M; Serrano, M; Toma, C; Youroukos, S1
Akiyama, M; Akiyama, T; Hanaoka, Y; Hayashi, Y; Kobayashi, K; Kubota, M; Nakamura, K; Shibata, T; Tsuyusaki, Y; Yoshinaga, H1

Other Studies

7 other study(ies) available for 3-methoxytyrosine and methoxyhydroxyphenylglycol

ArticleYear
Monoamine metabolites in human cerebrospinal fluid. HPLC/ED method.
    Acta neurologica Scandinavica, 1984, Volume: 69, Issue:4

    Topics: 3,4-Dihydroxyphenylacetic Acid; Alzheimer Disease; Chromatography, High Pressure Liquid; Depression; Dihydroxyphenylalanine; Electrochemistry; Glycols; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Methoxyhydroxyphenylglycol; Parkinson Disease; Phenylacetates; Subarachnoid Hemorrhage; Tryptophan; Tyrosine

1984
Clinical pharmacology of the new COMT inhibitor CGP 28,014.
    Neurochemical research, 1993, Volume: 18, Issue:11

    Topics: Amidines; Animals; Benserazide; Catechol O-Methyltransferase Inhibitors; Corpus Striatum; Dopamine; Dose-Response Relationship, Drug; Homovanillic Acid; Humans; Isoquinolines; Kinetics; Methoxyhydroxyphenylglycol; Norepinephrine; Pyridones; Rats; Tyrosine; Vanilmandelic Acid

1993
Tyrosine and tryptophan derivatives in pig lumbar cerebrospinal fluid. Effects of subchronic administration of dopa associated with benserazide.
    Advances in experimental medicine and biology, 1996, Volume: 398

    Topics: 3,4-Dihydroxyphenylacetic Acid; Administration, Oral; Animals; Benserazide; Drug Interactions; Female; Homovanillic Acid; Hydroxyindoleacetic Acid; Kynurenine; Levodopa; Male; Methoxyhydroxyphenylglycol; Normetanephrine; Swine; Tryptamines; Tryptophan; Tyrosine

1996
The influence of L-dopa on methylation capacity in aromatic L-amino acid decarboxylase deficiency: biochemical findings in two patients.
    Journal of inherited metabolic disease, 2000, Volume: 23, Issue:4

    Topics: Amino Acid Metabolism, Inborn Errors; Aromatic-L-Amino-Acid Decarboxylases; Dopamine; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Hypokinesia; Levodopa; Methoxyhydroxyphenylglycol; Methylation; Muscle Hypotonia; Tetrahydrofolates; Tyrosine

2000
Developmental changes in cerebrospinal fluid concentrations of monoamine-related substances in patients with dentatorubral-pallidoluysian atrophy.
    Journal of child neurology, 2001, Volume: 16, Issue:2

    Topics: Adolescent; Age Factors; Aging; Biogenic Monoamines; Case-Control Studies; Child; Child, Preschool; Chromatography, High Pressure Liquid; Female; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Male; Methoxyhydroxyphenylglycol; Myoclonic Epilepsies, Progressive; Tryptophan; Tyrosine

2001
Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation.
    Movement disorders : official journal of the Movement Disorder Society, 2010, Jun-15, Volume: 25, Issue:8

    Topics: Child, Preschool; Dihydroxyphenylalanine; DNA Mutational Analysis; Greece; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Leucine; Metabolic Diseases; Methoxyhydroxyphenylglycol; Mutation; Proline; Tyrosine; Tyrosine 3-Monooxygenase; Young Adult

2010
Simultaneous measurement of monoamine metabolites and 5-methyltetrahydrofolate in the cerebrospinal fluid of children.
    Clinica chimica acta; international journal of clinical chemistry, 2017, Volume: 465

    Topics: Aromatic-L-Amino-Acid Decarboxylases; Chromatography, High Pressure Liquid; Dihydroxyphenylalanine; Dystonic Disorders; Fluorescence; Folate Receptor 1; Homovanillic Acid; Humans; Hydroxyindoleacetic Acid; Limit of Detection; Methoxyhydroxyphenylglycol; Neuroaxonal Dystrophies; Reference Values; Reproducibility of Results; Tetrahydrofolates; Tyrosine

2017