3-mercaptohexanol has been researched along with 4-methyl-4-sulfanylpentan-2-one* in 2 studies
2 other study(ies) available for 3-mercaptohexanol and 4-methyl-4-sulfanylpentan-2-one
Article | Year |
---|---|
A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
Quinones are key reactive electrophilic oxidation intermediates in wine. To address this question, the model 4-methyl-1,2-benzoquinone was prepared to study how it reacts with wine nucleophiles. Those investigated included the varietal volatile thiols 4-methyl-4-sulfanylpentan-2-one (4MSP), 3-sulfanylhexan-1-ol (3SH), and 2-furanmethanethiol (2FMT); hydrogen sulfide (H2S); glutathione (GSH); sulfur dioxide; ascorbic acid (AA); and the amino acids methionine (Met) and phenylalanine (Phe) in the first kinetic study of these reactions. Products were observed in fair to quantitative yields, but yields were negligible for the amino acids. The reaction rates of 4-methyl-1,2-benzoquinone toward the nucleophiles were quantified by UV-vis spectrometry monitoring the loss of the quinone chromophore. The observed reaction rates spanned three orders of magnitude, from the unreactive amino acids (Met and Phe) (KNu = 0.0002 s(-1)) to the most reactive nucleophile, hydrogen sulfide (KH2S = 0.4188 s(-1)). Analysis of the kinetic data showed three categories. The first group consisted of the amino acids (Met and Phe) having rates of essentially zero. Next, phloroglucinol has a low rate (KPhl = 0.0064 s(-1)). The next group of compounds includes the volatile thiols having increasing reactions rates K as steric inhibition declined (K4MSP = 0.0060 s(-1), K3SH = 0.0578 s(-1), and K2FMT = 0.0837 s(-1)). These volatile thiols (4MSP, 3SH, 2FMT), important for varietal aromas, showed lower K values than those of the third group, the wine antioxidant compounds (SO2, GSH, AA) and H2S (KNu = 0.3343-0.4188 s(-1)). The characterization of the reaction products between the nucleophiles and 4-methyl-1,2-benzoquinone was performed by using HPLC with high-resolution MS analysis. This study presents the first evidence that the antioxidant compounds, H2S, and wine flavanols could react preferentially with oxidation-induced quinones under specific conditions, providing insight into a mechanism for their protective effect. Topics: Benzoquinones; Chromatography, High Pressure Liquid; Furans; Glutathione; Hexanols; Hydrogen Sulfide; Kinetics; Mass Spectrometry; Methionine; Oxidation-Reduction; Pentanones; Phenylalanine; Quinones; Sulfhydryl Compounds; Sulfur Dioxide; Wine | 2012 |
The grape must non-Saccharomyces microbial community: impact on volatile thiol release.
Several studies have reported the beneficial influence of non-Saccharomyces yeasts and their potential applications in the wine industry, mainly in mixed-culture fermentation with S. cerevisiae. The potential impact of 15 non-Saccharomyces strains from 7 species on 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) release in model medium and Sauvignon Blanc must was evaluated after partial fermentation. Whereas the impact of non-Saccharomyces on 4MSP release in both media was low, some M. pulcherrima, T. delbrueckii and K. thermotolerans strains had a high capacity to release 3SH, despite their minimal fermentation activity. As previously demonstrated for Saccharomyces yeast, this contribution is strain dependant. Taking into account their dynamic and quantitative presence during the whole process, the real impact of non-Saccharomyces yeast on 4MSP and 3SH release was evaluated using a recreated community simulating the yeast ecosystem. Our results revealed a positive impact on 3SH release in Sauvignon Blanc wines by promoting non-Saccharomyces yeast activity and delaying the growth of S. cerevisiae. Some non-Saccharomyces yeast strains are capable of making a positive contribution to volatile thiol release in wines, essentially during the pre-fermentation stage in winemaking, when this microbiological sub-population is dominant. Topics: Fermentation; Hexanols; Pentanones; Saccharomyces; Sulfhydryl Compounds; Vitis; Wine; Yeasts | 2011 |