3-isomangostin has been researched along with mangostin* in 4 studies
4 other study(ies) available for 3-isomangostin and mangostin
Article | Year |
---|---|
Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening.
MutT homologue 1 (MTH1) protects the nucleotide pool from oxidative stress by hydrolyzing oxidized nucleoside triphosphates and prevents their incorporation into DNA. Cancer cells are dependent on the MTH1 activity for survival due to the high-level of reactive oxygen species in cancer cells; therefore, MTH1 is considered to be a novel target for treatment of various cancers. Here, we show by X-ray crystallographic screening using an in-house cocktail library that α-mangostin, a natural xanthone from mangosteen pericarp, binds to the active site of MTH1. A subsequent inhibition assay revealed that 3-isomangostin, a cyclized derivative of α-mangostin, was the most potent MTH1 inhibitor, with an IC Topics: Catalytic Domain; Crystallography, X-Ray; DNA Repair Enzymes; Drug Discovery; Drug Evaluation, Preclinical; Enzyme Inhibitors; Garcinia mangostana; Phosphoric Monoester Hydrolases; Protein Binding; Xanthones | 2019 |
Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.
Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. Topics: Cholinesterase Inhibitors; Garcinia mangostana; Molecular Docking Simulation; Molecular Structure; Prenylation; Structure-Activity Relationship; Xanthones | 2014 |
Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents.
A xanthone-derived natural product, α-mangostin is isolated from various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthone derivatives based on α-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure-activity relationship studies revealed that phenol groups on C3 and C6 are critical to anti-proliferative activity and C4 modification is capable to improve both anti-cancer activity and drug-like properties. Our findings provide new possibilities for further explorations to improve potency. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Garcinia mangostana; Humans; Neoplasms; Structure-Activity Relationship; Xanthones | 2014 |
Inhibition of eukaryote protein kinases and of a cyclic nucleotide-binding phosphatase by prenylated xanthones.
A series of prenylated xanthones are variously potent inhibitors of the catalytic subunit (cAK) of rat liver cyclic AMP-dependent protein kinase (PKA), rat brain Ca2+ and phospholipid-dependent protein kinase C (PKC), chicken gizzard myosin light chain kinase (MLCK), wheat embryo Ca2+-dependent protein kinase (CDPK) and potato tuber cyclic nucleotide-binding phosphatase (Pase). The prenylated xanthones examined are mostly derivatives of alpha-mangostin in which the 3-hydroxyl and 6-hydroxyl are variously substituted with groups R or R', respectively, or derivatives of 3-isomangostin (mangostanol) in which the 9-hydroxyl is substituted with groups R' or the prenyl side chain is modified. The most potent inhibitors of cAK have non-protonatable and relatively small R' and R groups. Conversely, the most potent inhibitors of PKC and MLCK have bulkier and basic R' groups. Some prenylated xanthones are also potent inhibitors of CDPK. PKC and cAK are competitively inhibited by particular prenylated xanthones whereas the compounds that are the most potent inhibitors of MLCK and CDPK are non-competitive inhibitors. Prenylated xanthones having relatively small and non-protonatable R' and R groups inhibit a high-affinity cyclic nucleotide binding Pase in a non-competitive fashion. Topics: Animals; Antifungal Agents; Chickens; Cyclic Nucleotide-Regulated Protein Kinases; Enzyme Inhibitors; Gizzard, Avian; Myosin-Light-Chain Kinase; Protein Kinase Inhibitors; Protein Kinases; Rats; Solanum tuberosum; Structure-Activity Relationship; Triticum; Xanthenes; Xanthones | 1998 |