3-hydroxytibolone has been researched along with tibolone* in 8 studies
2 trial(s) available for 3-hydroxytibolone and tibolone
Article | Year |
---|---|
Bioequivalence studies of tibolone in premenopausal women and effects on expression of the tibolone-metabolizing enzyme AKR1C (aldo-keto reductase) family caused by estradiol.
This study aimed to investigate the bioequivalence of a test formulation of tibolone with the marketed reference formulation in 24 young healthy female volunteers. Tibolone is a synthetic steroid hormone for menopausal women. Volunteers were treated with the 2 formulations of tibolone (total dose of active ingredient 2.5 mg) according to a 2 x 2 crossover design with a 1-week washout period. Plasma concentrations of 3alpha- and 3beta-hydroxytibolone, which are major metabolites of tibolone, were assayed in timed samples over a 24-hour period with a validated gas chromatography/mass spectrometry (GC/MS) method that had a lower limit of quantification of 0.5 ng/mL. The reference and test formulations gave a mean 3alpha-hydroxytibolone C(max) of 5.0 and 5.2 ng/mL, respectively, and a mean 3beta-hydroxytibolone C(max) of 16.4 and 16.5 ng/mL, respectively. The mean AUC(t) of 3alpha-hydroxytibolone was 24.7 and 24.3 ng h/mL, whereas the mean AUC(t) of 3beta-hydroxytibolone was 57.6 and 54.8 ng h/mL for the test and reference formulations, respectively. The authors did not find significant differences in pharmacokinetic parameters between the 2 formulations, but metabolite formation was different from reports in postmenopausal women. The authors therefore measured the effects of estradiol on the expression of the tibolone-metabolizing enzymes, from the aldo-keto reductase (AKR1C) family, using HepG2 cell (human hepatoma cells) and MCF-7 cell (human breast cancer cells). Estradiol increased mRNA levels of AKR1C1, AKR1C2, and AKR1C3 and protein levels of total AKR1C in HepG2 cells. Estradiol selectively enhanced levels of AKR1C2 mRNA in MCF-7 cells. Thus, changes in the major metabolites of tibolone might result from changes in AKR1C family expression by patient estrogen status. Topics: 20-Hydroxysteroid Dehydrogenases; 3-Hydroxysteroid Dehydrogenases; Adult; Alcohol Oxidoreductases; Aldehyde Reductase; Aldo-Keto Reductase Family 1 Member C3; Aldo-Keto Reductases; Area Under Curve; Cell Line, Tumor; Cross-Over Studies; Enzyme Activation; Estradiol; Estrogen Receptor Modulators; Female; Gene Expression Regulation, Enzymologic; Glucose Transporter Type 1; Half-Life; Humans; Hydroxyprostaglandin Dehydrogenases; Hydroxysteroid Dehydrogenases; Immunoblotting; Norpregnenes; Premenopause; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Therapeutic Equivalency; Young Adult | 2008 |
Levels of tibolone and estradiol and their nonsulfated and sulfated metabolites in serum, myometrium, and vagina of postmenopausal women following treatment for 21 days with tibolone, estradiol, or estradiol plus medroxyprogestrone acetate.
Tibolone has estrogenic effects on the vagina but not on the uterus. To explain this, levels of tibolone and estradiol and their metabolites were determined in serum, myometrium, and vagina. Thirty-four postmenopausal women with uterine prolapse received either no treatment, tibolone, E(2) or E(2) + medroxyprogesterone acetate (MPA) for 21 days, or a single dose of tibolone. Twenty +/- 6 hours after administration, >98% of the 3-hydroxytibolone metabolites in serum and tissues were disulfated. Of the unconjugated metabolites, the estrogenic 3alpha-hydroxytibolone predominated in serum, whereas the progestagenic/ androgenic Delta(4)-tibolone predominated in myometrium and vagina. Levels of disulfated metabolites in serum and tissues were higher (3- to 5-fold) after multiple dosing than after a single dose. Tissue:serum ratios were <1, except for Delta(4)-tibolone. In all groups, E(2) tissue levels were higher than serum levels; the percentage of serum E(1)S was >90%. Tibolone did not affect endogenous E(1), E(2), or E(1)S levels in serum, but in myometrium and vagina, E(1) levels were significantly higher and E(1)S levels tended to be lower than in controls. Serum and tissue levels of endogenous and exogenous E(1), E(2), and E(1)S were markedly increased 20 hours after E(2) or E(2) + MPA; the percentage of E(1)S and tissue:serum ratios were not affected. MPA had no effect on the degree of sulfation of E(1). Compared with serum, tissue levels of E(2) were high in all groups; absolute E(2) levels in control and tibolone groups were much lower than in the E(2) groups. Tibolone metabolite patterns are different in serum, myometrium, and vagina. Topics: Aged; Estradiol; Estrone; Female; Humans; Medroxyprogesterone Acetate; Middle Aged; Myometrium; Norpregnenes; Postmenopause; Selective Estrogen Receptor Modulators; Tissue Distribution; Uterine Prolapse; Vagina | 2007 |
6 other study(ies) available for 3-hydroxytibolone and tibolone
Article | Year |
---|---|
Determination of 3-α-hydroxytibolone in human plasma by LC-MS/MS: application for a pharmacokinetic study after administration of a tibolone formulation.
A new method was developed for the quantitation of 3-α-hydroxy tibolone, in human plasma, after oral administration of a tablet formulation containing tibolone (2.5 mg). 3-α-Hydroxy tibolone was extracted by a liquid-liquid procedure, using cyproterone acetate as internal standard and chlorobutane as extraction solvent. After extraction, samples were submitted to a derivatization step with p-toluenesulfonyl isocyanate. A mobile phase consisting of acetonitrile and water (72:28 v/v) was used and chromatographic separation was achieved using Agilent XDB C18 column (100 × 4.6 mm i.d.; 5 µm particle size), at 40°C. Mass spectrometric detection was performed using atmospheric pressure chemical ionization in negative mode for 3-α-hydroxy tibolone and in positive mode for cyproterone acetate. The fragmentation transitions were m/z 510.2 → m/z 170.1 and m/z 417.0 → m/z 357.1 for 3-α-hydroxy tibolone and cyproterone acetate, respectively. Calibration curves were constructed over the range 100-30,000 pg/mL and the method was shown to be specific, precise and accurate, with a mean recovery rate of 94.2% for 3-α-hydroxy tibolone. No matrix effect or carry-over was detected in the samples. The validated method was applied in a pharmacokinetic study with a tibolone formulation in healthy female volunteers. Topics: Administration, Oral; Chromatography, Liquid; Estrogen Receptor Modulators; Female; Humans; Limit of Detection; Norpregnenes; Tandem Mass Spectrometry | 2013 |
Effects of tibolone metabolites on human endometrial cell lines in co-culture.
In human endometrium, cell proliferation is regulated by ovarian steroids through heterotypic interactions between stromal and epithelial cells populating this tissue. The authors test the proliferative effects of tibolone and its metabolites using endometrial co-cultures that mimic the normal proliferative response to hormones. They found that both the Delta(4)-tibolone metabolite and the pure progestin ORG2058 counteract estradiol-driven epithelial cell proliferation. Surprisingly, the estrogen receptor binding 3-hydroxyl-metabolites of tibolone also counteracted estradiol-driven proliferation. Inhibition of proliferation by 3beta-OH-tibolone was abrogated by low doses of the progesterone receptor antagonist mifepristone. This suggests that 3beta-OH-tibolone is converted to a progestagenic metabolite. The authors found that the stromal cells used in the co-cultures express high levels of the ketosteroid dehydrogenase AKR1C2, which is able to oxidize 3beta-OH-tibolone back to tibolone. Thus, the unexpected progestagenic effect of 3beta-OH-tibolone in these co-cultures may be due to metabolic activity present in the stromal cells of the co-cultures. Topics: 20-Hydroxysteroid Dehydrogenases; Cell Division; Cell Line; Coculture Techniques; Endometrium; Epithelial Cells; Estradiol; Estrogen Receptor Modulators; Female; Humans; Norpregnenes; Pregnenediones; Reverse Transcriptase Polymerase Chain Reaction; Stromal Cells | 2008 |
Pharmacokinetic parameters of tibolone and metabolites in plasma, urine, feces, and bile from ovariectomized cynomolgus monkeys after a single dose or multiple doses of tibolone.
Levels of nonsulfated and sulfated tibolone metabolites were determined in plasma, urine, and feces from six ovariectomized, mature female cynomolgus monkeys after a single dose and multiple p.o. doses (including bile) of tibolone using validated gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry assays. In plasma, the predominant nonsulfated metabolite after single and multiple dosing was the estrogenic 3alpha-hydroxytibolone; levels of the estrogenic 3beta-hydroxytibolone were 10-fold lower and of progestagenic/androgenic Delta(4)-tibolone, 5-fold lower. Tibolone was undetectable. The predominant sulfated metabolite was 3alphaS,17betaS-tibolone; levels of 3betaS,17betaS-tibolone were about 2-fold lower, and monosulfated 3-hydroxymetabolites were about 10-fold lower. After multiple doses, areas under the curve of nonsulfated metabolites were lower (2-fold), and those of sulfated metabolites were 25% higher. In plasma, >95% metabolites were disulfated. In urine, levels of all the metabolites after single and multiple doses were low. After a single dose, high levels of 3beta-hydroxytibolone and the 3-monosulfated metabolites (3betaS,17betaOH-tibolone and 3alphaS,17betaOH-tibolone) were found in feces. After multiple dosing, 3alpha-hydroxytibolone increased, and the ratio of 3alpha/3beta-hydroxytibolone became about 1. The predominant sulfated metabolite was 3alphaS,17betaS-tibolone. Levels of all the metabolites in feces were higher after multiple doses than after a single dose. Levels of nonsulfated and 3-monosulfated metabolites were higher in feces than in plasma. Bile contained very high metabolite levels, except monosulfates. This may contribute to the metabolite content of the feces after multiple doses. 3beta-Hydroxytibolone and 3alphaS,17betaS-tibolone predominated. In conclusion, tibolone had different metabolite patterns in plasma, urine, feces, and bile in monkeys. The bile contributed to the metabolite pattern in feces after multiple doses. The major excretion route was in feces. Topics: Administration, Oral; Animals; Bile; Biotransformation; Chromatography, High Pressure Liquid; Drug Administration Schedule; Feces; Female; Gas Chromatography-Mass Spectrometry; Macaca fascicularis; Norpregnenes; Ovariectomy; Reproducibility of Results; Selective Estrogen Receptor Modulators; Sulfates; Tandem Mass Spectrometry | 2007 |
Selective tissue distribution of tibolone metabolites in mature ovariectomized female cynomolgus monkeys after multiple doses of tibolone.
Tibolone is a selective tissue estrogenic activity regulator (STEAR). In postmenopausal women, it acts as an estrogen on brain, vagina, and bone, but not on endometrium and breast. Despite ample supporting in vitro data for tissue-selective actions, confirmative tissue levels of tibolone metabolites are not available. Therefore, we analyzed tibolone and metabolites in plasma and tissues from six ovariectomized cynomolgus monkeys that received tibolone (0.5 mg/kg/day by gavage) for 36 days and were necropsied at 1, 1.25, 2.25, 4, 6, and 24 h after the final dose. The plasma and tissue levels of active, nonsulfated (tibolone, 3alpha-hydroxytibolone, 3beta-hydroxytibolone, and Delta(4)-tibolone), monosulfated (3alpha-sulfate,17beta-hydroxytibolone and 3beta-sulfate,17beta-hydroxytibolone), and disulfated (3alpha,17beta-disulfated-tibolone and 3beta,17betaS-disulfated-tibolone) metabolites were measured by validated gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. Detection limits were 0.1 to 0.5 ng/ml (plasma) and 0.5 to 2 ng/g (tissues). In brain tissues, estrogenic 3alpha-hydroxytibolone was predominant with 3 to 8 times higher levels than in plasma; levels of sulfated metabolites were low. In vaginal tissues, major nonsulfated metabolites were 3alpha-hydroxytibolone and the androgenic/progestagenic Delta(4)-tibolone; disulfated metabolites were predominant. Remarkably high levels of monosulfated metabolites were found in the proximal vagina. In endometrium, myometrium, and mammary glands, levels of 3-hydroxymetabolites were low and those of sulfated metabolites were high (about 98% disulfated). Delta(4)-Tibolone/3-hydroxytibolone ratios were 2 to 3 in endometrium, about equal in breast and proximal vagina, and 0.1 in plasma and brain. It is concluded that tibolone metabolites show a unique tissue-specific distribution pattern explaining the tissue effects in monkeys and the clinical effects in postmenopausal women. Topics: Administration, Oral; Animals; Biotransformation; Brain; Breast; Chromatography, High Pressure Liquid; Drug Administration Schedule; Female; Gas Chromatography-Mass Spectrometry; Macaca fascicularis; Molecular Structure; Norpregnenes; Ovariectomy; Reproducibility of Results; Selective Estrogen Receptor Modulators; Sulfates; Tandem Mass Spectrometry; Tissue Distribution; Uterus; Vagina | 2007 |
3-ketosteroid reductase activity and expression by fetal rat osteoblasts.
In addition to reproductive tissue, sex hormones induce transcriptional events in many connective tissue cells, including osteoblasts. Some sex hormone receptor modulators with bone sparing effects selectively target estrogen or androgen receptors, whereas others appear more promiscuous, in part through enzymatic metabolism. Rat osteoblasts express significant oxidative 3alpha-hydroxysteroid dehydrogenase activity, which can convert precursor substrates to potent androgen receptor agonists. Here we show that they also express 3-ketosteroid reductase activity, exemplified by 7-methyl-17-ethynyl-19-norandrostan-5 (10)en-3-one (tibolone) conversion to potent estrogen receptor alpha agonists. Conversion was rapid and quantitative, with 3alpha-hydroxytibolone as the primary metabolite. Consistently, tibolone induced estrogen receptor alpha-dependent gene promoter activity through cis-acting estrogen response elements, increased the stimulatory effect of TGF-beta on Smad-dependent gene promoter activity, and enhanced prostaglandin E2-induced activity of transcription factor Runx2. Rat osteoblasts express the 3-ketosteroid reductase AKR1C9, an aldo-keto reductase gene family member. Exposure to prostaglandin E2 increased AKR1C9 gene promoter activity and mRNA expression. AKR1C9 promoter activity was also enhanced by overexpression of protein kinase A catalytic subunit or transcription factor C/EBPdelta, and the effect of PGE2 was reduced by dominant negative C/EBPdelta competition or C/EBPdelta antisense expression. Moreover, prostaglandin E2 increased the amount of functional endogenous nuclear C/EBPdelta that could bind specifically to a distinct domain approximately 1.8-kb upstream from the start site of AKR1C9 transcription. In summary, in addition to 3alpha-hydroxysteroid dehydrogenase, rat osteoblasts express significant and regulatable 3-ketosteroid reductase activity. Through these enzymes, they may selectively metabolize precursor compounds into potent steroid receptor agonists locally within bone. Topics: 3-Hydroxysteroid Dehydrogenases; Androgen Receptor Antagonists; Animals; CCAAT-Enhancer-Binding Protein-delta; Cells, Cultured; Core Binding Factor Alpha 1 Subunit; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Dinoprostone; Estrogen Receptor alpha; Gene Expression Regulation, Enzymologic; Gonadal Steroid Hormones; Norpregnenes; Oligodeoxyribonucleotides, Antisense; Osteoblasts; Oxidoreductases; Rats; Receptors, Androgen; Response Elements; Smad Proteins; Transforming Growth Factor beta | 2007 |
Sulfation of tibolone metabolites by human postmenopausal liver and small intestinal sulfotransferases (SULTs).
Sulfation is a major pathway in humans for the biotransformation of steroid hormones and structurally related therapeutic agents. Tibolone is a synthetic steroid used for the treatment for climacteric symptoms and postmenopausal osteoporosis. Sulfation inactivates the hydroxylated metabolites, 3alpha-hydroxytibolone (3alpha-OH-tibolone) and 3beta-hydroxytibolone (3beta-OH-tibolone), and contributes to the regulation of tissue responses to tibolone. We detected SULT1A1, SULT1A3, SULT1E1 and SULT2A1 mRNA expression by RT-PCR in postmenopausal liver and small intestine. Liver pool (n=5) SULT activities measured with tibolone substrates reflected COS-1 expressed SULT2A1 and SULT1E1 activities. Liver SULT2A1 activity (1.8 +/- 0.3 units/mg protein, n = 8, mean +/- SEM), and activities with 3alpha-OH-tibolone (0.6 +/- 0.1, n = 8) and 3beta-OH-tibolone (0.9 +/- 0.2, n = 8) were higher than SULT1E1 activities (<0.05, n = 10). SULT1E1 activities were low or not detected in many samples. Mean small intestinal activities were 0.03 +/- 0.01 with 3alpha-OH-tibolone and 0.04 +/- 0.01 with 3beta-OH-tibolone (n = 3). In conclusion, SULT2A1 is the major endogenous enzyme responsible for sulfation of the tibolone metabolites in human postmenopausal tissues. The results support the occurrence of pre-receptor enzymatic regulation of hydroxytibolone metabolites and prompt further investigation of the tissue-selective regulation of tibolone effects. Topics: Chromatography, High Pressure Liquid; Gene Expression Profiling; Humans; Intestine, Small; Liver; Nitrophenols; Norpregnenes; Phosphoadenosine Phosphosulfate; Postmenopause; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sodium Chloride; Sulfotransferases; Temperature | 2006 |