3-hydroxyhippuric-acid has been researched along with 3-hydroxybenzeneacetic-acid* in 2 studies
1 trial(s) available for 3-hydroxyhippuric-acid and 3-hydroxybenzeneacetic-acid
Article | Year |
---|---|
Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome.
Red wine and grape polyphenols are considered to promote cardiovascular health and are involved in multiple biological functions. Their overall impact on the human metabolome is not known. Therefore, exogenous and endogenous metabolic effects were determined in fasting plasma and 24 h urine from healthy male adults consuming a mix of red wine and grape juice extracts (WGM) for 4 days in a placebo-controlled, crossover study. Syringic acid, 3-hydroxyhippuric acid, pyrogallol, 3-hydroxyphenylacetic acid, and 3-hydroxyphenylpropionic acid were confirmed as the strongest urinary markers of WGM intake. Overall, WGM had a mild impact on the endogenous metabolism. Most noticeable were changes in several amino acids deriving from tyrosine and tryptophan. Reductions in the microbial metabolites p-cresol sulfate and 3-indoxylsulfuric acid and increases in indole-3-lactic acid and nicotinic acid were observed in urine. In plasma, tyrosine was reduced. The results suggest that short-term intake of WGM altered microbial protein fermentation and/or amino acid metabolism. Topics: Adolescent; Adult; Aged; Cross-Over Studies; Fruit; Gallic Acid; Hippurates; Humans; Male; Metabolome; Middle Aged; Phenols; Phenylacetates; Placebos; Plant Extracts; Polyphenols; Propionates; Pyrogallol; Tyrosine; Vitis; Wine | 2012 |
1 other study(ies) available for 3-hydroxyhippuric-acid and 3-hydroxybenzeneacetic-acid
Article | Year |
---|---|
Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders.
Autism spectrum disorders (ASDs) are a group of mental illnesses highly correlated with gut microbiota. Recent studies have shown that some abnormal aromatic metabolites in autism patients are presumably derived from overgrown Clostridium species in gut, which may be used for diagnostic purposes. In this paper, a GC/MS based metabolomic approach was utilized to seek similar biomarkers by analyzing the urinary information in 62 ASDs patients compared with 62 non-ASDs controls in China, aged 1.5-7. Three compounds identified as 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), 3-hydroxyphenylacetic acid (3HPA), and 3-hydroxyhippuric acid (3HHA) were found in higher concentrations in autistic children than in the controls (p < 0.001). After oral vancomycin treatment, urinary excretion of HPHPA (p < 0.001), 3HPA (p < 0.005), and 3HHA (p < 0.001) decreased markedly, which indicated that these compounds may also be from gut Clostridium species. The sensitivity and specificity of HPHPA, 3HPA, and 3HHA were evaluated by receiver-operating characteristic (ROC) analysis. The specificity of each compound for ASDs was very high (>96%). After two-regression analysis, the optimal area under the curve (AUC, 0.962), sensitivity (90.3%), and specificity (98.4%) were obtained by ROC curve of Prediction probability based on the three metabolites. These findings demonstrate that the measurements of the three compounds are strong predictors of ASDs and support the potential clinical utility for identifying a subgroup of ASDs subjects. Topics: Autism Spectrum Disorder; Biomarkers; Child; Child, Preschool; China; Female; Hippurates; Humans; Infant; Male; Phenylacetates; Phenylpropionates; Prevalence; Reproducibility of Results; Risk Factors; Sensitivity and Specificity | 2016 |