Page last updated: 2024-08-21

3-hydroxyflavone and chrysoeriol

3-hydroxyflavone has been researched along with chrysoeriol in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (20.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A1
Ahn, S; Jung, H; Jung, Y; Lee, YH; Lim, Y; Shin, SY; Yong, Y1
Alunda, JM; Baptista, C; Behrens, B; Bifeld, E; Borsari, C; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Dello Iacono, L; Di Pisa, F; Eick, J; Ellinger, B; Ferrari, S; Gribbon, P; Gul, S; Henrich, S; Jiménez-Antón, MD; Keminer, O; Kohler, M; Kuzikov, M; Landi, G; Luciani, R; Mangani, S; Pellati, F; Poehner, I; Pozzi, C; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Trande, M; Wade, RC; Witt, G; Wolf, M1
Dutour, R; Poirier, D1
Bonn, GK; Guttman, A; Kery, A; Ringer, T; Vukics, V1

Reviews

1 review(s) available for 3-hydroxyflavone and chrysoeriol

ArticleYear
Inhibitors of cytochrome P450 (CYP) 1B1.
    European journal of medicinal chemistry, 2017, Jul-28, Volume: 135

    Topics: Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Structure-Activity Relationship

2017

Other Studies

4 other study(ies) available for 3-hydroxyflavone and chrysoeriol

ArticleYear
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
    Journal of natural products, 1999, Volume: 62, Issue:3

    Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha

1999
Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships.
    Chemical biology & drug design, 2015, Volume: 85, Issue:5

    Topics: Apoptosis; Aurora Kinase A; Aurora Kinase B; Aurora Kinase C; Binding Sites; Chromones; Eriocaulaceae; Flavones; G2 Phase Cell Cycle Checkpoints; HCT116 Cells; Humans; M Phase Cell Cycle Checkpoints; Microscopy, Fluorescence; Molecular Docking Simulation; Phosphorylation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Quantitative Structure-Activity Relationship

2015
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
    Journal of medicinal chemistry, 2016, 08-25, Volume: 59, Issue:16

    Topics: Animals; Biological Products; Cell Line; Dose-Response Relationship, Drug; Flavonols; Humans; Macrophages; Mice; Mice, Inbred BALB C; Models, Molecular; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei

2016
Analysis of heartsease (Viola tricolor L.) flavonoid glycosides by micro-liquid chromatography coupled to multistage mass spectrometry.
    Journal of chromatography. A, 2008, Oct-03, Volume: 1206, Issue:1

    Topics: Apigenin; Chromatography, High Pressure Liquid; Chromatography, Liquid; Flavones; Flavonoids; Flavonols; Glycosides; Kaempferols; Luteolin; Mass Spectrometry; Quercetin; Spectrometry, Mass, Electrospray Ionization; Viola

2008