3-hydroxyaspartic acid has been researched along with quinoxalines in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (57.14) | 18.2507 |
2000's | 3 (42.86) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Balcar, VJ; Li, Y | 1 |
Greenberg, DA; Koretz, B; Lustig, HS; von B Ahern, K; Wang, N | 1 |
Diamond, JS; Jahr, CE | 1 |
Davis, RE | 1 |
Isaac, JT; Kidd, FL | 1 |
Aguilar-Veiga, E; Galán-Valiente, J; Sierra-Marcuño, G; Sierra-Paredes, G; Vazquez-Illanes, MD | 1 |
Grebenyuk, S; Kirichok, Y; Krishtal, O; Lozovaya, N; Melnik, S; Tsintsadze, T | 1 |
7 other study(ies) available for 3-hydroxyaspartic acid and quinoxalines
Article | Year |
---|---|
The Na(+)-dependent binding of [3H]L-aspartate in thaw-mounted sections of rat forebrain.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Autoradiography; Dicarboxylic Acids; Female; Glutamates; Glutamic Acid; In Vitro Techniques; Kinetics; Male; Neurotransmitter Uptake Inhibitors; Presynaptic Terminals; Prosencephalon; Pyrrolidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Sodium | 1994 |
Pre- and post-synaptic modulators of excitatory neurotransmission: comparative effects on hypoxia/hypoglycemia in cortical cultures.
Topics: Animals; Aspartic Acid; Benzopyrans; Calcium Channel Blockers; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Cromakalim; Diazoxide; Embryo, Mammalian; Glutamates; Hypoglycemia; Kainic Acid; Kinetics; L-Lactate Dehydrogenase; Neurons; Potassium Channels; Pyrroles; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission; Time Factors | 1994 |
Transporters buffer synaptically released glutamate on a submillisecond time scale.
Topics: Animals; Animals, Newborn; Aspartic Acid; Cells, Cultured; Evoked Potentials; Glutamic Acid; Hippocampus; Kinetics; Kynurenic Acid; Lithium; Models, Neurological; Neurons; Quinoxalines; Rats; Receptors, AMPA; Synapses; Synaptic Transmission; Tetrodotoxin; Time Factors | 1997 |
Action of excitatory amino acids on hypodermis and the motornervous system of Ascaris suum: pharmacological evidence for a glutamate transporter.
Topics: Amino Acid Transport System X-AG; Animals; Ascaris suum; Aspartic Acid; ATP-Binding Cassette Transporters; Biological Transport, Active; Calcium; Dose-Response Relationship, Drug; Electric Conductivity; Epithelium; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Glutamic Acid; Kainic Acid; Membrane Potentials; Microelectrodes; Motor Neurons; Quinoxalines; Sodium | 1998 |
Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex.
Topics: Amino Acid Transport System X-AG; Animals; Aspartic Acid; ATP-Binding Cassette Transporters; Benzothiadiazines; Biological Transport; Dicarboxylic Acids; Diuretics; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; In Vitro Techniques; Kainic Acid; Neurotransmitter Uptake Inhibitors; Picrotoxin; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Sodium Chloride Symporter Inhibitors; Somatosensory Cortex; Synaptic Transmission; Thalamus | 2000 |
Effect of ionotropic glutamate receptors antagonists on the modifications in extracellular glutamate and aspartate levels during picrotoxin seizures: a microdialysis study in freely moving rats.
Topics: Animals; Anti-Anxiety Agents; Aspartic Acid; Benzodiazepines; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Extracellular Space; Glutamic Acid; Hippocampus; Male; Microdialysis; Picrotoxin; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Seizures | 2000 |
Protective cap over CA1 synapses: extrasynaptic glutamate does not reach the postsynaptic density.
Topics: 4-Aminopyridine; Amino Acid Transport System X-AG; Animals; Animals, Newborn; Aspartic Acid; Dizocilpine Maleate; Drug Interactions; Evoked Potentials; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Models, Neurological; N-Methylaspartate; Neural Inhibition; Neurons; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Synapses | 2004 |