3-hexenylacetate and methyl-salicylate

3-hexenylacetate has been researched along with methyl-salicylate* in 6 studies

Other Studies

6 other study(ies) available for 3-hexenylacetate and methyl-salicylate

ArticleYear
Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.
    Environmental science & technology, 2015, Jan-06, Volume: 49, Issue:1

    Vegetation emits a class of oxygenated hydrocarbons--the green leaf volatiles (GLVs)--under stress or damage. Under foggy conditions GLVs might be a source of secondary organic aerosol (SOA) via aqueous reactions with hydroxyl radical (OH), singlet oxygen ((1)O2*), and excited triplet states ((3)C*). To examine this, we determined the aqueous kinetics and SOA mass yields for reactions of (3)C* and (1)O2* with five GLVs: methyl jasmonate (MeJa), methyl salicylate (MeSa), cis-3-hexenyl acetate (HxAc), cis-3-hexen-1-ol (HxO), and 2-methyl-3-butene-2-ol (MBO). Second-order rate constants with (3)C* and (1)O2* range from (0.13-22) × 10(8) M(-1) s(-1) and (8.2-60) × 10(5) M(-1) s(-1) at 298 K, respectively. Rate constants with (3)C* are independent of temperature, while values with (1)O2* show significant temperature dependence (Ea = 20-96 kJ mol(-1)). Aqueous SOA mass yields for oxidation by (3)C* are (84 ± 7)%, (80 ± 9)%, and (38 ± 18)%, for MeJa, MeSa, and HxAc, respectively; we did not measure yields for other conditions because of slow kinetics. The aqueous production of SOA from GLVs is dominated by (3)C* and OH reactions, which form low volatility products at a rate that is approximately half that from the parallel gas-phase reactions of GLVs.

    Topics: Acetates; Aerosols; Cyclopentanes; Hexanols; Hydroxyl Radical; Kinetics; Oxygen; Oxylipins; Pentanols; Plant Leaves; Salicylates; Singlet Oxygen; Temperature; Volatile Organic Compounds; Volatilization; Water

2015
Development of a female attractant for the click beetle pest Agriotes brevis.
    Pest management science, 2014, Volume: 70, Issue:4

    Traps suitable for catching female Agriotes click beetles may provide better reconnaissance than pheromone-baited traps which catch only males, thereby contributing to more efficient crop protection. The basis for this study came from (i) observations of female Agriotes brevis (Candeze) aggregating beneath foliage of Medicago sativa (L.) and Lolium italicum (A. Br.) placed on plastic sheets on bare soil, and (ii) field tests demonstrating attraction of females to traps baited with foliage from these plants. The aim was to identify and field test volatile compounds from M. sativa and L. italicum leaves.. A number of electrophysiologically active chemicals were identified from headspace extracts of M. sativa and L. italicum. Three different synthetic blends of the identified compounds, comprising four, seven and nine components, were field tested. The four- and nine-component blends caught more female A. brevis than unbaited traps, with the proportion of females not differing between blends.. The plant-derived blends were shown to catch female A. brevis under field conditions when applied in traps. Of these, the four-component blend, given its relatively simple composition [(Z)-3-hexenyl acetate:methyl benzoate:(Z)-3-hexen-1-ol:methyl salicylate 300:5:30:30 mg bait(-1)], may be a suitable 'standard' blend for bait optimisation.

    Topics: Acetates; Animals; Arthropod Antennae; Behavior, Animal; Coleoptera; Female; Hexanols; Italy; Lolium; Medicago sativa; Pheromones; Plant Leaves; Salicylates; Volatile Organic Compounds

2014
Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone.
    Phytochemistry, 2012, Volume: 78

    Upon insect herbivory, plants can release blends of volatile organic compounds (VOCs) that modify herbivore and natural enemy behaviour. We have shown recently that cotton, Gossypium hirsutum, emits a blend of defence VOCs that repels the cotton aphid, Aphis gossypii, upon herbivory by this notorious crop pest, including (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In this study, we investigated changes in the defence VOC profile of G. hirsutum induced by the naturally-occurring plant elicitor cis-jasmone (CJ) and whether these changes modify the behaviour of A. gossypii. In four-arm olfactometer assays, VOCs from untreated plants were significantly attractive (P<0.05), whilst VOCs from CJ-treated plants were significantly repellent (P<0.05). The VOCs induced by CJ appeared to comprise (Z)-3-hexenyl acetate, DMNT, methyl salicylate and TMTT. In quantitative VOC collection studies, sustained release of DMNT and TMTT was observed in CJ-treated plants over a period of five days, with levels becoming statistically significantly higher than for control treated plants on the fifth day in most cases. Despite earlier indications, no statistically significant differences were observed in levels of (Z)-3-hexenyl acetate or methyl salicylate between CJ and control treatments on any day. Furthermore, DMNT and TMTT emissions from CJ-treated plants were further enhanced by subsequent addition of A. gossypii. CJ treatment induced statistically significantly higher DMNT and TMTT expression levels as early as day three, when A. gossypii was present. The results in this study show that CJ can induce the production of A. gossypii-induced VOCs from G. hirsutum, with potential for deployment in novel crop protection strategies.

    Topics: Acetates; Alkenes; Animals; Aphids; Cyclopentanes; Gossypium; Herbivory; Molecular Structure; Oxylipins; Salicylates; Stereoisomerism; Terpenes; Volatile Organic Compounds

2012
Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars.
    Journal of chemical ecology, 2011, Volume: 37, Issue:3

    Several studies have shown that herbivore-induced plant volatiles act directly on herbivores and indirectly on their natural enemies. However, little is known about the effect of herbivore damage on resistant and susceptible plant cultivars and its effect on their natural enemies. Thus, the aim of this study was to evaluate the attraction of the herbivorous pentatomid bug Euschistus heros and its egg parasitoid Telenomus podisi to two resistant and one susceptible soybean cultivars with different types of damage (herbivory, herbivory+oviposition, and oviposition). In a Y-tube olfactometer, the parasitoids were attracted to herbivory and herbivory+oviposition damaged soybean plants when compared to undamaged soybean plants for the resistant cultivars, but did not show preference for the susceptible cultivar Silvânia in any of the damage treatments. The plant volatiles emitted by oviposition-damaged plants in the three cultivars did not attract the egg parasitoid. In four-arm-olfactometer bioassays, E. heros females did not show preference for odors of damaged or undamaged soybean plants of the three cultivars studied. The Principal Response Curves (PRC) analysis showed consistent variability over time in the chemical profile of volatiles between treatments for the resistant cultivar Dowling. The compounds that most contributed to the divergence between damaged soybean plants compared to undamaged plants were (E,E)-α-farnesene, methyl salicylate, (Z)-3-hexenyl acetate, and (E)-2-octen-1-ol.

    Topics: Acetates; Animals; Behavior, Animal; Female; Glycine max; Host-Parasite Interactions; Hymenoptera; Octanols; Oviposition; Pentastomida; Plant Leaves; Salicylates; Sesquiterpenes; Time Factors

2011
Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae).
    Chemical senses, 2008, Volume: 33, Issue:1

    The cabbage moth, Mamestra brassicae L. (Lepidoptera, Noctuidae), is a polyphagous species that is often choosing plants of Brassica as hosts for oviposition. In the search for biologically relevant odorants used by these moths, gas chromatography linked to electrophysiological recordings from single receptor neurons (RNs) has been employed, resulting in classification of distinct types of neurons. This study presents specific olfactory RNs responding to methyl salicylate (MeS) as primary odorant and showing a weak response to methyl benzoate, the 2 aromatic compounds occurring together in several plant species. In 2 cases, the neuron was colocated with another RN type responding to 6 green leaf volatiles: 1-hexanol, (3Z)-hexen-1-ol, (2E)-hexen-1-ol, (3Z)-hexenyl acetate, (2Z)-hexen-1-ol, and an unidentified compound. Whereas the specific RNs detected the minor amounts of MeS in some plants, the compound was not found by gas chromatography linked to mass spectrometry in intact plants, but it was found after herbivore attack. The behavioral effect of MeS was studied in outdoor test arenas with Brassica napus and artificial plants. These experiments indicated that mated M. brassicae females avoid plants with dispensers emitting MeS. As it is induced by caterpillar feeding, this compound may mediate a message to mated M. brassicae females that the plant is already occupied.

    Topics: Acetates; Action Potentials; Animals; Arabidopsis; Benzoates; Brassica; Brassica napus; Chromatography, Gas; Electrophysiology; Female; Hexanols; Male; Moths; Odorants; Olfactory Receptor Neurons; Oviposition; Salicylates; Sexual Behavior, Animal

2008
The involvement of volatile infochemicals from spider mites and from food-plants in prey location of the generalist predatory mite Neoseiulus californicus.
    Journal of chemical ecology, 2005, Volume: 31, Issue:9

    We investigated volatile infochemicals possibly involved in location of the generalist predatory mite Neoseiulus californicus to plants infested with spider mites in a Y-tube olfactometer. The predators significantly preferred volatiles from lima bean leaves infested with Tetranychus urticae to uninfested lima bean leaves. Likewise, they were attracted to volatiles from artificially damaged lima bean leaves and those from T. urticae plus their visible products. Significantly more predators chose infested lima bean leaves from which T. urticae plus their visible products had been removed than artificially damaged leaves, T. urticae, and their visible products. These results suggest that N. californicus is capable of exploiting a variety of volatile infochemicals originating from their prey, from the prey-foodplants themselves, and from the complex of the prey and the host plants (e.g., herbivore-induced volatiles). We also investigated predator response to some of the synthetic samples identified as volatile components emitted from T. urticae-infested lima bean leaves and/or artificially damaged lima bean leaves. The predators were attracted to each of the five synthetic volatile components: linalool, methyl salicylate, (Z)-3-hexen-1-ol, (E)-2-hexenal, and (Z)-3-hexenyl acetate. The role of each volatile compound in prey-searching behavior is discussed.

    Topics: Acetates; Acyclic Monoterpenes; Aldehydes; Animals; Chemotactic Factors; Female; Hexanols; Mites; Monoterpenes; Odorants; Phaseolus; Plant Leaves; Predatory Behavior; Salicylates; Smell; Tetranychidae; Volatilization

2005
chemdatabank.com