3-hexenylacetate and methyl-jasmonate

3-hexenylacetate has been researched along with methyl-jasmonate* in 2 studies

Other Studies

2 other study(ies) available for 3-hexenylacetate and methyl-jasmonate

ArticleYear
Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.
    Environmental science & technology, 2015, Jan-06, Volume: 49, Issue:1

    Vegetation emits a class of oxygenated hydrocarbons--the green leaf volatiles (GLVs)--under stress or damage. Under foggy conditions GLVs might be a source of secondary organic aerosol (SOA) via aqueous reactions with hydroxyl radical (OH), singlet oxygen ((1)O2*), and excited triplet states ((3)C*). To examine this, we determined the aqueous kinetics and SOA mass yields for reactions of (3)C* and (1)O2* with five GLVs: methyl jasmonate (MeJa), methyl salicylate (MeSa), cis-3-hexenyl acetate (HxAc), cis-3-hexen-1-ol (HxO), and 2-methyl-3-butene-2-ol (MBO). Second-order rate constants with (3)C* and (1)O2* range from (0.13-22) × 10(8) M(-1) s(-1) and (8.2-60) × 10(5) M(-1) s(-1) at 298 K, respectively. Rate constants with (3)C* are independent of temperature, while values with (1)O2* show significant temperature dependence (Ea = 20-96 kJ mol(-1)). Aqueous SOA mass yields for oxidation by (3)C* are (84 ± 7)%, (80 ± 9)%, and (38 ± 18)%, for MeJa, MeSa, and HxAc, respectively; we did not measure yields for other conditions because of slow kinetics. The aqueous production of SOA from GLVs is dominated by (3)C* and OH reactions, which form low volatility products at a rate that is approximately half that from the parallel gas-phase reactions of GLVs.

    Topics: Acetates; Aerosols; Cyclopentanes; Hexanols; Hydroxyl Radical; Kinetics; Oxygen; Oxylipins; Pentanols; Plant Leaves; Salicylates; Singlet Oxygen; Temperature; Volatile Organic Compounds; Volatilization; Water

2015
Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.
    Plant physiology, 2015, Volume: 167, Issue:4

    Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection.

    Topics: Acetates; Cyclopentanes; Fusarium; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Salicylic Acid; Seedlings; Trichothecenes; Triticum

2015