3-dehydroquinic-acid has been researched along with 3-dehydroshikimate* in 4 studies
4 other study(ies) available for 3-dehydroquinic-acid and 3-dehydroshikimate
Article | Year |
---|---|
Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.
Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydrogenases (SDH/QDH) occurring in bacteria and plants. We characterized the dual-substrate quinate/shikimate dehydrogenase (QSDH) from Corynebacterium glutamicum (CglQSDH) kinetically and revealed a clear substrate preference of CglQSDH for quinate compared with shikimate both at the pH optimum and in a physiological pH range, which is a remarkable contrast to closely related SDH/QDH enzymes. With respect to the cosubstrate, CglQSDH is strictly NAD(H) dependent. These substrate and cosubstrate profiles correlate well with the details of three atomic resolution crystal structures of CglQSDH in different functional states we report here: with bound NAD+ (binary complex) and as ternary complexes with NADH plus either shikimate or quinate. The CglQSDH-NADH-quinate structure is the first complex structure of any member of the SDH/QDH family with quinate. Based on this novel structural information and systematic sequence and structure comparisons with closely related enzymes, we can explain the strict NAD(H) dependency of CglQSDH as well as its discrimination between shikimate and quinate. Topics: Alcohol Oxidoreductases; Catalytic Domain; Chlorogenic Acid; Corynebacterium glutamicum; NADP; Protein Binding; Quinic Acid; Shikimic Acid; Substrate Specificity | 2013 |
Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.
The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors. Topics: Bacterial Proteins; Catalysis; Catalytic Domain; Clostridioides difficile; Crystallography, X-Ray; Hydro-Lyases; Protein Binding; Protein Conformation; Quinic Acid; Salmonella enterica; Schiff Bases; Shikimic Acid | 2011 |
Enzymatic preparation of metabolic intermediates, 3-dehydroquinate and 3-dehydroshikimate, in the shikimate pathway.
A method for enzymatic preparation of 3-dehydroquinate and 3-dehydroshikimate in the shikimate pathway was established by controlling the enzyme activity of 3-dehydroquinate dehydratase. When quinate was incubated with the membrane fraction of acetic acid bacteria at pH 5.0, 3-dehydroquinate was formed as the predominant product. 3-Dehydroshikimate was the sole product when incubated at pH 8.0. Mutual separation of the metabolic intermediates was also exemplified. Topics: Chromatography, Liquid; Oxidation-Reduction; Quinic Acid; Shikimic Acid; Spectrophotometry, Ultraviolet | 2006 |
Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis.
The toxicity of aromatics frequently limits the yields of their microbial synthesis. For example, the 5% yield of catechol synthesized from glucose by Escherichia coli WN1/pWL1.290A under fermentor-controlled conditions reflects catechol's microbial toxicity. Use of in situ resin-based extraction to reduce catechol's concentration in culture medium and thereby its microbial toxicity during its synthesis from glucose by E. coli WN1/pWL1.290A led to a 7% yield of catechol. Interfacing microbial with chemical synthesis was then explored where glucose was microbially converted into a nontoxic intermediate followed by chemical conversion of this intermediate into catechol. Intermediates examined include 3-dehydroquinate, 3-dehydroshikimate, and protocatechuate. 3-Dehydroquinate and 3-dehydroshikimate synthesized, respectively, by E. coli QP1.1/pJY1.216A and E. coli KL3/pJY1.216A from glucose were extracted and then reacted in water heated at 290 degrees C to afford catechol in overall yields from glucose of 10% and 26%, respectively. The problematic extraction of these catechol precursors from culture medium was subsequently circumvented by high-yielding chemical dehydration of 3-dehydroquinate and 3-dehydroshikimate in culture medium followed by extraction of the resulting protocatechuate. After reaction of protocatechuate in water heated at 290 degrees C, the overall yields of catechol synthesized from glucose via chemical dehydration of 3-dehydroquinate and chemical dehydration of 3-dehydroshikimate were, respectively, 25% and 30%. Direct synthesis of protocatechuate from glucose using E. coli KL3/pWL2.46B followed by its extraction and chemical decarboxylation in water gave a 24% overall yield of catechol from glucose. In situ resin-based extraction of protocatechaute synthesized by E. coli KL3/pWL2.46B followed by chemical decarboxylation of this catechol percursor was then examined. This employment of both strategies for dealing with the microbial toxicity of aromatic products led to the highest overall yield with catechol synthesized in 43% overall yield from glucose. Topics: Catechols; Escherichia coli; Fermentation; Glucose; Hydro-Lyases; Hydroxybenzoates; Quinic Acid; Shikimic Acid | 2005 |