3-acetyldeoxynivalenol and acetyldeoxynivalenol

3-acetyldeoxynivalenol has been researched along with acetyldeoxynivalenol* in 3 studies

Other Studies

3 other study(ies) available for 3-acetyldeoxynivalenol and acetyldeoxynivalenol

ArticleYear
New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin.
    Environmental microbiology, 2015, Volume: 17, Issue:8

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.

    Topics: Chromatography, Liquid; Edible Grain; Food Contamination; Fusarium; Genotype; Mycotoxins; North America; Oryza; Plant Diseases; Trichothecenes; Triticum

2015
Trichothecene Genotype Composition of Fusarium graminearum Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York.
    Phytopathology, 2015, Volume: 105, Issue:5

    In order to test the hypothesis that the trichothecene genotype composition of local populations of Fusarium graminearum is structured by specific habitats, a collection of 1,407 isolates was obtained from overwintered maize stubble, mature maize ears and wheat spikes, and the atmosphere 1.5 m aboveground during the flowering stage of these crops. These isolates were sampled at three diverse agricultural locations in New York State: namely, Aurora (sampled in 2012 and 2013) in central New York, Belmont (sampled in 2013) in southwestern New York, and Willsboro (sampled in 2013) in northeastern New York. Approximately 100 isolates of F. graminearum from each habitat were collected within a 10-mile2 area in each location. Polymerase chain reaction assays were used to identify three main B-trichothecene genotypes--3-acetyldeoxynivalenol (3-ADON), 15-ADON, or nivalenol (NIV)--based on amplification of portions of Tri3 and Tri12 genes. All but the NIV genotype were detected. The 15-ADON genotype predominated in most locations; frequencies were 92% (652/709) at Aurora, 78% (332/379) at Belmont, and 53% (167/319) at Willsboro. Frequencies of any genotype did not differ in general among the four habits in each location. An exception was in Aurora 2012, where only 5 in 24 3-ADON isolates were found in samplings from the air and grains of both crops. As viewed by the composition of trichothecene genotypes, local populations of F. graminearum appear not to be structured by these four habitats inclusive of pathogenic and saprophytic phases of the fungus life cycle. The similar frequency of 3-ADON and 15-ADON in eastern New York (Willsboro), which is less than 400 km away from the Aurora sampling location in the central area of the state, suggests that regional populations may be differentiated based on selection associated with climatic or landscape features not currently identified.

    Topics: Agriculture; Atmosphere; Fusarium; Genotype; New York; Plant Diseases; Trichothecenes; Triticum; Zea mays

2015
Blood-Brain Barrier Effects of the Fusarium Mycotoxins Deoxynivalenol, 3 Acetyldeoxynivalenol, and Moniliformin and Their Transfer to the Brain.
    PloS one, 2015, Volume: 10, Issue:11

    Secondary metabolites produced by Fusarium fungi frequently contaminate food and feed and have adverse effects on human and animal health. Fusarium mycotoxins exhibit a wide structural and biosynthetic diversity leading to different toxicokinetics and toxicodynamics. Several studies investigated the toxicity of mycotoxins, focusing on very specific targets, like the brain. However, it still remains unclear how fast mycotoxins reach the brain and if they impair the integrity of the blood-brain barrier. This study investigated and compared the effects of the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol and moniliformin on the blood-brain barrier. Furthermore, the transfer properties to the brain were analyzed, which are required for risk assessment, including potential neurotoxic effects.. Primary porcine brain capillary endothelial cells were cultivated to study the effects of the examined mycotoxins on the blood-brain barrier in vitro. The barrier integrity was monitored by cellular impedance spectroscopy and 14C radiolabeled sucrose permeability measurements. The distribution of the applied toxins between blood and brain compartments of the cell monolayer was analyzed by high performance liquid chromatography-mass spectrometry to calculate transfer rates and permeability coefficients.. Deoxynivalenol reduced the barrier integrity and caused cytotoxic effects at 10 μM concentrations. Slight alterations of the barrier integrity were also detected for 3-acetyldeoxynivalenol. The latter was transferred very quickly across the barrier and additionally cleaved to deoxynivalenol. The transfer of deoxynivalenol and moniliformin was slower, but clearly exceeded the permeability of the negative control. None of the compounds was enriched in one of the compartments, indicating that no efflux transport protein is involved in their transport.

    Topics: Animals; Blood-Brain Barrier; Brain; Cyclobutanes; Swine; Trichothecenes

2015