3-6-dichlorocarbazole has been researched along with 3-chlorocarbazole* in 3 studies
3 other study(ies) available for 3-6-dichlorocarbazole and 3-chlorocarbazole
Article | Year |
---|---|
Photodegradative fate and potential phototoxic products of bromocarbazoles and chlorocarbazoles in water.
Bromocarbazoles and chlorocarbazoles are emerging environmental contaminants that have been reported to be persistent and possessing dioxin-like toxicity; however, their photodegradative fate in water is unknown. The photodegradation of 3-bromocarbazole, 3-chlorocarbazole, and 3,6-dichlorocarbazole was determined in ultrapure water. They proceeded by direct photolysis and followed first-order kinetics. The rate constants (k) were 0.4838, 0.3454, and 0.4422 h Topics: Carbazoles; Half-Life; Kinetics; Light; Models, Theoretical; Photolysis; Water Pollutants, Chemical | 2017 |
The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany.
The occurrence of bromocarbazoles and chlorocarbazoles was studied in 86 forest soil samples from different regions in Germany. Carbazole, 3-chlorocarbazole, 3-bromocarbazole and 3,6-dibromocarbazole were qualitatively detected in the humic layer of 59 soil samples with bromocarbazoles reported here for the first time in soil. Furthermore, the halogenated carbazoles, PCDD/Fs and PCBs were detected in the humic and mineral soil horizons (0-5 cm and 5-10 cm) of a subset of 11 soil samples subjected to quantitative analysis. Concentrations ranged from 0.6 to 267.6 ng/g (carbazole); 0.2-7.2 ng/g (3-bromocarbazole); 0.0-9.1 ng/g (3-chlorocarbazole); 0.2-19.8 ng/g (3,6-dibromocarbazole); 0.4-67.6 ng/g (3,6-dichlorocarbazole); 0.0-0.7 ng/g (PCDDs); 0.0-0.3 ng/g (PCDFs) and 0.0-33.7 ng/g (PCBs). Concentrations decreased with depth and correlated positively to total organic carbon (TOC). When it was based on TOC%, an increase in concentration with depth was observed in most soil samples. With respect to dioxin-like toxicity, 3-bromocarbazole, 3-chlorocarbazole, 3,6-dibromocarbazole and 3,6-dichlorocarbazoles caused induction of CYP1A1-dependent EROD activity in HII4E rat hepatoma cell line. Their relative effect potency after 72 h exposure ranged from 0.00005 to 0.00013 and was directly related to the degree of halogenation with 2,3,7,8-tetrachlorodibenzo-p-dioxin as reference. Furthermore, their contribution to overall soil dioxin-like toxicity was not significant in comparison to PCDD/Fs and PCBs though the sum toxic equivalency was limited to three halogenated carbazole congeners. Bromocarbazoles and chlorocarbazoles are emerging dioxin-like toxic environmental contaminants with potential for wide distribution occurring simultaneously with PCDD/Fs and PCBs. Topics: Animals; Benzofurans; Carbazoles; Cytochrome P-450 CYP1A1; Dioxins; Environmental Monitoring; Environmental Pollution; Forests; Germany; Halogenation; Polychlorinated Biphenyls; Polychlorinated Dibenzodioxins; Rats; Soil; Soil Pollutants | 2016 |
Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil.
3-Chlorocarbazole and 3,6-dichlorocarbazole were isolated from Bavarian soils. The stereospecific formation of the isomers of these chlorinated carbazols can be explained by quantum mechanical calculations using the DFT method. It was shown that chlorination of carbazole and 3-chlorocarbazole respectively is preferred via the sigma-complexes 3-chlorocarbazole and 3,6-dichlorocarbazole as the most stable products. The dioxin-like toxicological potential of 3,6-dichlorocarbazole, determined by the Micro-EROD Test, is in the range of some picogram TCDD equivalents per milligram carbazole. The degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole was analysed within a long-term study (57 days) in soil.. The soil was extracted by ASE (accelerated solvent extraction) and a further clean-up procedure with column chromatography and chromatography with C18-SPE stationary phases. Quantification of 3-chlorocarbazole and 3,6-dichlorocarbazole was performed employing the isotope-dilution method. The samples were measured with high-resolution GC/MS.. The degradation (ln(c/c(0)) vs. time with best-fit line) showed in almost every storage condition a very small degradation (slopes (h(-1)) in -10(-4) range). However, the decay for the controls were two to three times (-28°C) and six times (with sodium azide) higher, than the decrease of 3-chlorocarbazole and 3,6-dichlorocarbazole in the samples of environmental conditions.. Especially because of the toxicological potential of 3-chlorocarbazole and 3,6-dichlorocarbazole the proven degradative fate is of large interest. The results show that the analysed carbazoles are not readily degradable in this time period.. The expected results of exponential decay behaviour could not be proven.. Longer-lasting studies are expected to reveal more accurate half-lives, although it has been shown here, that the compounds are not readily degradable in their native soil environment. Topics: Aldrin; Animals; Carbazoles; Cell Line; Cytochrome P-450 CYP1A1; Dioxins; Half-Life; Halogenation; Rats; Soil; Soil Pollutants; Stereoisomerism | 2011 |