3,5-dihydroxyphenylglycine has been researched along with cyclosporine in 3 studies
Studies (3,5-dihydroxyphenylglycine) | Trials (3,5-dihydroxyphenylglycine) | Recent Studies (post-2010) (3,5-dihydroxyphenylglycine) | Studies (cyclosporine) | Trials (cyclosporine) | Recent Studies (post-2010) (cyclosporine) |
---|---|---|---|---|---|
301 | 1 | 61 | 30,547 | 3,802 | 6,558 |
22 | 0 | 10 | 377 | 2 | 170 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Sánchez-Prieto, J; Sistiaga, A | 1 |
Greengard, P; Liu, F; Nairn, AC; Virshup, DM | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
3 other study(ies) available for 3,5-dihydroxyphenylglycine and cyclosporine
Article | Year |
---|---|
Protein phosphatase 2B inhibitors mimic the action of arachidonic acid and prolong the facilitation of glutamate release by group I mGlu receptors.
Topics: 4-Aminopyridine; Animals; Arachidonic Acid; Calcineurin; Calcineurin Inhibitors; Calcium; Cyclosporine; Diglycerides; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Male; Membrane Potentials; Protein Phosphatase 1; Pyrethrins; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Resorcinols; Synaptosomes; Time Factors | 2000 |
Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors.
Topics: Animals; Calcineurin; Casein Kinases; Chelating Agents; Cyclin-Dependent Kinase 5; Cyclin-Dependent Kinases; Cyclosporine; Dopamine and cAMP-Regulated Phosphoprotein 32; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Estrenes; Excitatory Amino Acid Agonists; Glycine; In Vitro Techniques; Male; Mice; Neostriatum; Nerve Tissue Proteins; Peptide Mapping; Phosphoproteins; Phosphorylation; Protein Kinases; Pyrrolidinones; Receptors, Metabotropic Glutamate; Resorcinols; Serine; Signal Transduction; Threonine; Tumor Cells, Cultured; Type C Phospholipases | 2002 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |