3-4-dihydroxyphenylpropionic-acid has been researched along with 4-methylcatechol* in 1 studies
1 other study(ies) available for 3-4-dihydroxyphenylpropionic-acid and 4-methylcatechol
Article | Year |
---|---|
Kinetic cooperativity of tyrosinase. A general mechanism.
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type S(A) substrates, which give rise to a stable product as the o-quinone evolves by means of a first or pseudo first order reaction (α-methyl dopa, dopa methyl ester, dopamine, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, α-methyl-tyrosine, tyrosine methyl ester, tyramine, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid), type S(B) substrates, which include those whose o-quinone evolves with no clear stoichiometry (catechol, 4-methylcatechol, phenol and p-cresol) and, lastly, type S(C) substrates, which give rise to stable o-quinones (4-tert-butylcatechol/4-tert-butylphenol). Topics: 3,4-Dihydroxyphenylacetic Acid; Caffeic Acids; Catechols; Cresols; Deoxyepinephrine; Dopamine; Models, Chemical; Monophenol Monooxygenase; Phenols; Phenylacetates; Phenylpropionates; Quinones; Substrate Specificity | 2011 |