3-4-dihydroxyphenylpropionic-acid has been researched along with 3-phenylpropionic-acid* in 2 studies
2 other study(ies) available for 3-4-dihydroxyphenylpropionic-acid and 3-phenylpropionic-acid
Article | Year |
---|---|
Lipophilic phenolic antioxidants: correlation between antioxidant profile, partition coefficients and redox properties.
Lipophilic compounds structurally based on caffeic, hydrocaffeic, ferulic and hydroferulic acids were synthesized. Subsequently, their antioxidant activity was evaluated as well as their partition coefficients and redox potentials. The structure-property-activity relationship (SPAR) results revealed the existence of a clear correlation between the redox potentials and the antioxidant activity. In addition, some compounds showed a proper lipophilicity to cross the blood-brain barrier. Their predicted ADME properties are also in accordance with the general requirements for potential CNS drugs. Accordingly, one can propose these phenolic compounds as potential antioxidants for tackling the oxidative status linked to the neurodegenerative processes. Topics: Antioxidants; Cinnamates; Lipid Peroxidation; Lipids; Oxidation-Reduction; Phenols; Phenylpropionates; Structure-Activity Relationship | 2010 |
Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds.
Phenolic compounds are not completely absorbed in the small intestine and so enter the colon, where they might exert physiological effects. To identify phenolics that are present in normal human colon, fecal water was prepared from 5 free-living volunteers with no dietary restrictions and analyzed by gas chromatography-mass spectrometry. Daily measurements were also performed on a single individual to examine the variation more closely. Levels of polyphenols were variable between individuals. Naringenin and quercetin had mean concentrations of 1.20 and 0.63 microM. All other flavonoids examined were present < or =0.17 microM. Simple phenolic and other aromatic acids were present at much higher concentrations. The major components were phenylacetic acid, 479 microM; 3-phenylpropionic acid, 166 microM; 3-(4-hydroxy)-phenylpropionic acid, 68 microM; 3,4-dihydroxycinnamic acid, 52 microM; benzoic acid, 51 microM; 3-hydroxyphenylacetic acid, 46 microM; and 4-hydroxyphenylacetic acid, 19 microM. Other phenolic acids ranged from 0.04 to 7 microM. Decreased dietary phenolic intake caused a decrease in polyphenol and monophenolic acid concentration in fecal water 24 h later. This study is the first to measure the range of aromatic compounds in human fecal water and demonstrates that phenolic acid concentrations are high. The biological effects of phenolics may play an important role in colon function. Topics: Adult; Benzoic Acid; Caffeic Acids; Colon; Diet; Dose-Response Relationship, Drug; Feces; Flavanones; Flavonoids; Free Radicals; Gas Chromatography-Mass Spectrometry; Humans; Intestine, Small; Male; Models, Chemical; Phenol; Phenols; Phenylacetates; Phenylpropionates; Polyphenols; Quercetin; Time Factors | 2005 |