3,4-dihydroxyphenylacetic acid has been researched along with hydroquinone in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (40.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Günzler, V; Hanauske-Abel, HM; Kivirikko, KI; Majamaa, K; Myllylä, R | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Menter, JM; Willis, I | 1 |
Fink, AL; Gallagher, A; Hong, DP; Long, C; Uversky, VN; Zhou, W | 1 |
5 other study(ies) available for 3,4-dihydroxyphenylacetic acid and hydroquinone
Article | Year |
---|---|
Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase.
Topics: Animals; Ascorbic Acid; Binding Sites; Chick Embryo; Ketoglutaric Acids; Kinetics; Phenols; Procollagen-Proline Dioxygenase; Protein Binding; Structure-Activity Relationship; Substrate Specificity | 1986 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Interaction of several mono- and dihydroxybenzene derivatives of various depigmenting potencies with L-3,4-dihydroxyphenylalanine-melanin.
Topics: 3,4-Dihydroxyphenylacetic Acid; Catechols; Dihydroxyphenylalanine; Ferricyanides; Humans; Hydroquinones; Kinetics; Melanins; Oxidation-Reduction; Phenols; Phenylacetates; Pigmentation | 1986 |
At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation.
Topics: 3,4-Dihydroxyphenylacetic Acid; alpha-Synuclein; Amyloid; Catechols; Homogentisic Acid; Hydroquinones; Microscopy, Electron, Transmission; Oxidation-Reduction; Protein Binding | 2009 |