Page last updated: 2024-09-03

3,4-dihydroxyphenylacetaldehyde and pyrroles

3,4-dihydroxyphenylacetaldehyde has been researched along with pyrroles in 2 studies

Compound Research Comparison

Studies
(3,4-dihydroxyphenylacetaldehyde)
Trials
(3,4-dihydroxyphenylacetaldehyde)
Recent Studies (post-2010)
(3,4-dihydroxyphenylacetaldehyde)
Studies
(pyrroles)
Trials
(pyrroles)
Recent Studies (post-2010) (pyrroles)
9905026,1292,81512,100

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's2 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bax, A; DuMond, JF; Levine, RL; Werner-Allen, JW1
Bax, A; Levine, RL; Werner-Allen, JW1

Other Studies

2 other study(ies) available for 3,4-dihydroxyphenylacetaldehyde and pyrroles

ArticleYear
Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein.
    Angewandte Chemie (International ed. in English), 2016, 06-20, Volume: 55, Issue:26

    Topics: 3,4-Dihydroxyphenylacetic Acid; alpha-Synuclein; Cross-Linking Reagents; Humans; Limit of Detection; Pyrroles

2016
Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of α-synuclein.
    Biochemical and biophysical research communications, 2017, May-27, Volume: 487, Issue:2

    Topics: 3,4-Dihydroxyphenylacetic Acid; alpha-Synuclein; Binding Sites; Cross-Linking Reagents; Enzyme Activation; Lysine; Oxidation-Reduction; Oxygen; Protein Binding; Pyrroles; Reactive Oxygen Species; Superoxide Dismutase

2017