3-3--dioctadecyloxacarbocyanine has been researched along with 1-2-oleoylphosphatidylcholine* in 3 studies
3 other study(ies) available for 3-3--dioctadecyloxacarbocyanine and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
The bound states of amphipathic drugs in lipid bilayers: study of curcumin.
Drug-membrane interactions are well known but poorly understood. Here we describe dual measurements of membrane thickness change and membrane area change due to the binding of the amphipathic drug curcumin. The combined results allowed us to analyze the binding states of a drug to lipid bilayers, one on the water-membrane interface and another in the hydrocarbon region of the bilayer. The transition between the two states is strongly affected by the elastic energy of membrane thinning (or, equivalently, area stretching) caused by interfacial binding. The data are well described by a two-state model including this elastic energy. The binding of curcumin follows a common pattern of amphipathic peptides binding to membranes, suggesting that the binding states of curcumin are typical for amphipathic drugs. Topics: Binding Sites; Carbocyanines; Curcumin; Dimethyl Sulfoxide; Lipid Bilayers; Membrane Fluidity; Models, Chemical; Phosphatidylcholines; Phosphatidylethanolamines; Rhodamines; Unilamellar Liposomes | 2008 |
On the decrease in lateral mobility of phospholipids by sugars.
Upon cold and drought stress, sucrose and trehalose protect membrane structures from fusion and leakage. Similarly, these sugars protect membrane proteins from inactivation during dehydration. We studied the interactions between sugars and phospholipid membranes in giant unilamellar vesicles with the fluorescent lipid analog 3,3'-dioctadecyloxacarbocyanine perchlorate incorporated. Using fluorescence correlation spectroscopy, it was found that sucrose decreased the lateral mobility of phospholipids in the fully rehydrated, liquid crystalline membrane more than other sugars did, including trehalose. To describe the nature of the difference in the interaction of phospholipids with sucrose and trehalose, atomistic molecular dynamics studies were performed. Simulations up to 100 ns showed that sucrose interacted with more phospholipid headgroups simultaneously than trehalose, resulting in a larger decrease of the lateral mobility. Using coarse-grained molecular dynamics, we show that this increase in interactions can lead to a relatively large decrease in lateral phospholipid mobility. Topics: Carbocyanines; Fluorescent Dyes; Membrane Fluidity; Membranes, Artificial; Phosphatidylcholines; Spectrometry, Fluorescence; Sucrose; Trehalose | 2007 |
Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines.
Monolayers of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and some mixtures of these lipids were investigated using an epifluorescence microscopic surface balance. Monolayers were visualized at 23 +/- 1 degree C through the fluorescence of 1 mol% of two different fluorescent probes, 1-palmitoyl-2-(12-[(7-nitro-2-1,3-benzoxadizole-4- yl)amino]dodecanoyl)phosphatidylcholine (NBD-PC), which partitions into the liquid expanded (LE) or disordered lipid phase and 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO-C18), which preferentially associates with the liquid condensed (LC) phase or lipid with ordered chains. LC domains were observed in pure DPPC monolayers at relatively low surface pressures (pi), and these domains grew with increasing surface pressure. Only liquid expanded phase was observed in pure DOPC monolayers up to the point of monolayer collapse. In monolayers containing 29:70:1, 49:50:1, and 69:30:1 (mol/mol/mol) of DPPC:DOPC:probe the domains of LC phase were smaller than those seen in DPPC monolayers at equivalent surface pressures. Quantitative analysis of the visual fields shown by the mixed monolayers showed a distribution of sizes of condensed domains at any given pi. At pi = 30 mN m-1, liquid-expanded, or fluid, regions occupied more than 70% of the total monolayer area in all three mixtures studied, whereas DPPC monolayers were more than 75% condensed or solid at that pressure. For monolayers of DPPC:DOPC:NBD-PC 49:50:1 and 69:30:1 the average domain size and the percentage of the total area covered with LC, or rigid, areas increased to a maximum at pi around 35 mN m-1 followed by a decrease at higher pi. Repetitive compression and expansion of the monolayers containing DPPC:DOPC:NBD-PC 49:50:1 at an initial rate of 3.2 A2 molecule-1 s-1 produced monolayers with visual properties consistent with there being a preferential exclusion of the unsaturated lipid from the monolayer. Topics: 1,2-Dipalmitoylphosphatidylcholine; 4-Chloro-7-nitrobenzofurazan; Biophysical Phenomena; Biophysics; Carbocyanines; Fluorescent Dyes; Membranes, Artificial; Microscopy, Fluorescence; Phosphatidylcholines; Pulmonary Surfactants | 1993 |