3--hydroxypterostilbene has been researched along with pterostilbene* in 4 studies
1 review(s) available for 3--hydroxypterostilbene and pterostilbene
Article | Year |
---|---|
Biological actions and molecular effects of resveratrol, pterostilbene, and 3'-hydroxypterostilbene.
Stilbenes are a class of polyphenolic compounds, naturally found in a wide variety of dietary sources such as grapes, berries, peanuts, red wine, and some medicinal plants. There are several well-known stilbenes including trans-resveratrol, pterostilbene, and 3'-hydroxypterostilbene. The core chemical structure of stilbene compounds is 1,2-diphenylethylene. Recently, stilbenes have attracted extensive attention and interest due to their wide range of health-beneficial effects such as anti-inflammation, -carcinogenic, -diabetes, and -dyslipidemia activities. Moreover, accumulating in vitro and in vivo studies have reported that stilbene compounds act as inducers of multiple cell-death pathways such as apoptosis, cell cycle arrest, and autophagy for chemopreventive and chemotherapeutic agents in several types of cancer cells. The aim of this review is to highlight recent molecular findings and biological actions of trans-resveratrol, pterostilbene, and 3'-hydroxypterostilbene. Topics: Apoptosis; Humans; Resveratrol; Stilbenes | 2017 |
3 other study(ies) available for 3--hydroxypterostilbene and pterostilbene
Article | Year |
---|---|
Phase I Metabolism of Pterostilbene, a Dietary Resveratrol Derivative: Metabolite Identification, Species Differences, Isozyme Contribution, and Further Bioactivation.
Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, Topics: Glutathione; Humans; Isoenzymes; Quinones; Resveratrol; Species Specificity | 2023 |
Potent anti-cancer effect of 3'-hydroxypterostilbene in human colon xenograft tumors.
Here we report that 3'-hydroxypterostilbene (HPSB), a natural pterostilbene analogue, was more potent than pterostilbene against the growth of human cancer cells (COLO 205, HCT-116, and HT-29) with measured IC50 values of 9.0, 40.2, and 70.9 µM, respectively. We found that HPSB effectively inhibited the growth of human colon cancer cells by inducing apoptosis and autophagy. Autophagy occurred at an early stage and was observed through the formation of acidic vesicular organelles and microtubule-associated protein 1 light chain 3-II production. At the molecular levels, the results from western blot analysis showed that HPSB significantly down-regulated phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) signalings including decreased the phosphorylation of mammalian target of rapamycin (mTOR). Significant therapeutic effects were demonstrated in vivo by treating nude mice bearing COLO 205 tumor xenografts with HPSB (10 mg/kg i.p.). These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of cyclooxygenase-2 (COX-2), matrix metallopeptidase-9 (MMP-9), vascular endothelial growth factor (VEGF), and cyclin D1, as well as by the induction of apoptosis in colon tumors. Our findings suggest that HPSB could serve as a novel promising agent for colon cancer treatment. Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Cyclin D1; Cyclooxygenase 2; Humans; Inhibitory Concentration 50; Male; MAP Kinase Signaling System; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Phosphatidylinositol 3-Kinase; Stilbenes; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2014 |
Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells.
Pterostilbene and 3,5-hydroxypterostilbene are the natural 3,5-dimethoxy analogs of trans-resveratrol and piceatannol, two compounds which can induce apoptosis in tumor cells. In previous studies we demonstrated the importance of a 3,5-dimethoxy motif in conferring pro-apoptotic activity to stilbene based compounds so we now wanted to evaluate the ability of pterostilbene and 3,5-hydroxypterostilbene in inducing apoptosis in sensitive and resistant leukemia cells. When tested in sensitive cell lines, HL60 and HUT78, 3'-hydroxypterostilbene was 50-97 times more potent than trans-resveratrol in inducing apoptosis, while pterostilbene appeared barely active. However, both compounds, but not trans-resveratrol and piceatannol, were able to induce apoptosis in the two Fas-ligand resistant lymphoma cell lines, HUT78B1 and HUT78B3, and the multi drug-resistant leukemia cell lines HL60-R and K562-ADR (a Bcr-Abl-expressing cell line resistant to imatinib mesylate). Of note, pterostilbene-induced apoptosis was not inhibited by the pancaspase-inhibitor Z-VAD-fmk, suggesting that this compound acts through a caspase-independent pathway. On the contrary, 3'-hydroxypterostilbene seemed to trigger apoptosis through the intrinsic apoptotic pathway: indeed, it caused a marked disruption of the mitochondrial membrane potential delta psi and its apoptotic effects were inhibited by Z-VAD-fmk and the caspase-9-inhibitor Z-LEHD-fmk. Moreover, pterostilbene and 3'-hydroxypterostilbene, when used at concentrations that elicit significant apoptotic effects in tumor cell lines, did not show any cytotoxicity in normal hemopoietic stem cells. In conclusion, our data show that pterostilbene and particularly 3'-hydroxypterostilbene are interesting antitumor natural compounds that may be useful in the treatment of resistant hematological malignancies, including imatinib, non-responsive neoplasms. Topics: Apoptosis; Cell Line, Tumor; fas Receptor; Genes, abl; Genes, MDR; Humans; Leukemia; Phenols; Stilbenes | 2005 |