3--azido-2--3--dideoxyadenosine and 3--azido-2--3--dideoxyguanosine

3--azido-2--3--dideoxyadenosine has been researched along with 3--azido-2--3--dideoxyguanosine* in 2 studies

Other Studies

2 other study(ies) available for 3--azido-2--3--dideoxyadenosine and 3--azido-2--3--dideoxyguanosine

ArticleYear
Synthesis and evaluation of 3'-azido-2',3'-dideoxypurine nucleosides as inhibitors of human immunodeficiency virus.
    Bioorganic & medicinal chemistry letters, 2010, Jan-01, Volume: 20, Issue:1

    Based on the promising drug resistance profile and potent anti-HIV activity of beta-d-3'-azido-2',3'-dideoxyguanosine, a series of purine modified nucleosides were synthesized by a chemical transglycosylation reaction and evaluated for their antiviral activity, cytotoxicity, and intracellular metabolism. Among the synthesized compounds, several show potent and selective anti-HIV activity in primary lymphocytes.

    Topics: Anti-HIV Agents; Dideoxynucleosides; Glycosylation; HIV Reverse Transcriptase; Humans; Lymphocytes

2010
Anti-human immunodeficiency virus activity, cross-resistance, cytotoxicity, and intracellular pharmacology of the 3'-azido-2',3'-dideoxypurine nucleosides.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:9

    Although the approved nucleoside reverse transcriptase (RT) inhibitors (NRTI) are integral components of therapy for human immunodeficiency virus type 1 (HIV-1) infection, they can have significant limitations, including the selection of NRTI-resistant HIV-1 and cellular toxicity. Accordingly, there is a critical need to develop new NRTI that have excellent activity and safety profiles and exhibit little or no cross-resistance with existing drugs. In this study, we report that the 3'-azido-2',3'-dideoxypurine nucleosides (ADPNs) 3'-azido-2',3'-dideoxyadenosine (3'-azido-ddA) and 3'-azido-2',3'-dideoxyguanosine (3'-azido-ddG) exert potent antiviral activity in primary human lymphocytes and HeLa and T-cell lines (50% inhibitory concentrations [IC50s] range from 0.19 to 2.1 microM for 3'-azido-ddG and from 0.36 to 10 microM for 3'-azido-ddA) and that their triphosphate forms are incorporated as efficiently as the natural dGTP or dATP substrates by HIV-1 RT. Importantly, both 3'-azido-ddA and 3'-azido-ddG retain activity against viruses containing K65R, L74V, or M184V (IC50 change of <2.0-fold) and against those containing three or more thymidine analog mutations (IC50 change of <3.5-fold). In addition, 3'-azido-ddG does not exhibit cytotoxicity in primary lymphocytes or epithelial or T-cell lines and does not decrease the mitochondrial DNA content of HepG2 cells. Furthermore, 3'-azido-ddG is efficiently phosphorylated to 3'-azido-ddGTP in human lymphocytes, with an intracellular half-life of the nucleoside triphosphate of 9 h. The present data suggest that additional preclinical studies are warranted to assess the potential of ADPNs for treatment of HIV-1 infection.

    Topics: Anti-HIV Agents; Cell Line, Tumor; Cell Survival; Cells, Cultured; Dideoxynucleosides; HIV Infections; HIV-1; Humans; Molecular Structure; Reverse Transcriptase Inhibitors

2009