3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol has been researched along with 2-oleoylglycerol* in 2 studies
2 other study(ies) available for 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol and 2-oleoylglycerol
Article | Year |
---|---|
Inhibition of monoacylglycerol lipase by troglitazone, N-arachidonoyl dopamine and the irreversible inhibitor JZL184: comparison of two different assays.
Drugs used clinically usually have a primary mechanism of action, but additional effects on other biological targets can contribute to their effects. A potentially useful additional target is the endocannabinoid metabolizing enzyme monoacylglycerol lipase (MGL). We have screened a range of drugs for inhibition of MGL and compared the observed potencies using different MGL enzyme assays.. MGL activity was screened using recombinant human MGL (cell lysates and purified enzyme) with 4-nitrophenyl acetate (NPA) as substrate. 2-Oleolyglycerol metabolism by rat cerebellar cytosolic MGL and by recombinant MGL was also investigated.. Among the 96 compounds screened in the NPA assay, troglitazone, CP55,940, N-arachidonoyl dopamine and AM404 inhibited NPA hydrolysis by the lysates with IC(50) values of 1.1, 4.9, 0.78 and 3.1µM, respectively. The potency for troglitazone is in the same range as its primary pharmacological activity, activation of peroxisome proliferator-activated receptor (PPAR) γ. Among PPARγ ligands, the potency order towards human MGL was troglitazone > ciglitazone > rosiglitazone > 15-deoxy-Δ(12,14) -prostaglandin J(2) ≈ CAY 10415 > CAY 10514. In contrast to the time-dependent inhibitor JZL184, the potency of troglitazone was dependent upon the enzyme assay system used. Thus, troglitazone inhibited rat cytosolic 2-oleoylglycerol hydrolysis less potently (IC(50) 41µM) than hydrolysis of NPA by the human MGL lysates.. 'Hits' in screening programmes for MGL inhibitors should be assessed in different MGL assays. Troglitazone may be a useful lead for the design of novel, dual action MGL inhibitors/PPARγ activators. Topics: Animals; Arachidonic Acids; Benzodioxoles; Cannabinoid Receptor Modulators; Chromans; Cyclohexanols; Dopamine; Enzyme Assays; Glycerides; Humans; Monoacylglycerol Lipases; Nitrophenols; Piperidines; PPAR gamma; Rats; Rats, Sprague-Dawley; Rats, Wistar; Thiazolidinediones; Troglitazone | 2010 |
Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice.
Endocannabinoid signaling has been implicated in habituation to repeated stress. The hypothesis that repeated exposures to stress alters endocannabinoid signaling in the limbic circuit was tested by restraining male mice for 30 min/day for 1, 7, or 10 days and measuring brain endocannabinoid content. Amygdalar N-arachidonylethanolamine was decreased after 1, 7, and 10 restraint episodes; 2-arachidonylglycerol was increased after the 10th restraint. A similar pattern occurred in the medial prefrontal cortex (mPFC): N-arachidonylethanolamine was decreased after the 7th and 10th restraints and 2-arachidonylglycerol was increased after the 10th restraint. In the ventral striatum, the pattern reversed: N-arachidonylethanolamine was increased after the 10th restraint and 2-arachidonylglycerol was decreased after the 7th restraint. Palmitoylethanolamide contents changed in parallel with N-arachidonylethanolamine in the amygdala and ventral striatum. A single restraint episode did not affect the activity of fatty acid amide hydrolase (FAAH) in any of the brain regions examined. After the 10th restraint, both V(max) and K(m) for N-arachidonylethanolamine were increased in the mPFC; while only the V(max) was increased in the amygdala. On the other hand, the V(max) of FAAH was decreased in ventral striatum after the 10th restraint. After the 10th restraint, the maximum velocity for 2-oleoylglycerol hydrolysis was increased in mPFC; no other changes in 2-oleoylglycerol hydrolysis occurred. Repeated exposure to restraint produced no changes in CB(1) receptor density in any of the areas examined. These studies are consistent with the hypothesis that stress exposure alters endocannabinoid signaling in the brain and that alterations in endocannabinoid signaling occur during habituation to stress. Topics: Amidohydrolases; Amygdala; Analysis of Variance; Animals; Cannabinoid Receptor Modulators; Corpus Striatum; Corticosterone; Cyclohexanols; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Glycerides; Male; Mice; Mice, Inbred ICR; Prefrontal Cortex; Protein Binding; Restraint, Physical; Stress, Psychological; Time Factors; Tritium | 2008 |