3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid and levodopa

3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid has been researched along with levodopa in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (60.00)18.2507
2000's2 (40.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Honoré, T; Jähnig, P; Jenner, P; Kunow, M; Lange, KW; Löschmann, PA; Marsden, CD; Rettig, KJ; Turski, L; Wachtel, H1
Klockgether, T; Turski, L1
Marin, C; Tolosa, E1
Bonastre, M; Chase, TN; Jimenez, A; Marin, C; Tolosa, E1

Other Studies

5 other study(ies) available for 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid and levodopa

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson's disease.
    Journal of neural transmission. Parkinson's disease and dementia section, 1991, Volume: 3, Issue:3

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Callithrix; Disease Models, Animal; Drug Synergism; Ibotenic Acid; Levodopa; Male; Motor Activity; Oxidopamine; Parkinson Disease, Secondary; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Substantia Nigra

1991
NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats.
    Annals of neurology, 1990, Volume: 28, Issue:4

    Topics: Animals; Dizocilpine Maleate; Drug Synergism; Electromyography; Levodopa; Male; Methyltyrosines; Motor Activity; Muscle Rigidity; N-Methylaspartate; Parkinson Disease; Piperazines; Rats; Rats, Inbred Strains; Reserpine

1990
Glutamate receptor-mediated mechanisms in levodopa-induced motor fluctuations in an experimental model of parkinsonism.
    Advances in neurology, 1999, Volume: 80

    Topics: Animals; Dyskinesia, Drug-Induced; Excitatory Amino Acid Antagonists; Levodopa; Male; Parkinson Disease, Secondary; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Rotation; Stereotyped Behavior; Time Factors

1999
Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats.
    Synapse (New York, N.Y.), 2000, Jun-15, Volume: 36, Issue:4

    Topics: Animals; Antiparkinson Agents; Dextromethorphan; Excitatory Amino Acid Antagonists; Levodopa; Male; Motor Activity; Parkinsonian Disorders; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Riluzole; Rotation

2000