3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid has been researched along with homocysteine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (16.67) | 18.7374 |
1990's | 4 (66.67) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Jones, HE; Sillito, AM | 1 |
Cherubini, E; Ito, S; Provini, L | 1 |
Katki, AG; Rodbard, D; Schwarz, S; Zhou, GZ | 1 |
Lehmann, J; Tsai, C; Wood, PL | 1 |
Chandler, SH; Goldberg, LJ; Inoue, T | 1 |
Benz, B; Binns, KE; Do, KQ; Eaton, SA; Salt, TE | 1 |
6 other study(ies) available for 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid and homocysteine
Article | Year |
---|---|
The action of the putative neurotransmitters N-acetylaspartylglutamate and L-homocysteate in cat dorsal lateral geniculate nucleus.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cats; Dipeptides; Female; Geniculate Bodies; Homocysteine; Immunohistochemistry; Iontophoresis; Neurons; Neurotransmitter Agents; Photic Stimulation; Piperazines; Quinoxalines | 1992 |
L-homocysteic acid mediates synaptic excitation at NMDA receptors in the hippocampus.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Evoked Potentials; Glutamates; Glycine; Hippocampus; Homocysteine; In Vitro Techniques; Male; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Synapses; Tetrodotoxin | 1991 |
L-homocysteate stimulates [3H]MK-801 binding to the phencyclidine recognition site and is thus an agonist for the N-methyl-D-aspartate-operated cation channel.
Topics: 2-Amino-5-phosphonovalerate; Animals; Dizocilpine Maleate; Homocysteine; In Vitro Techniques; Ion Channels; Kinetics; Male; Piperazines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Phencyclidine; Stereoisomerism; Stimulation, Chemical | 1990 |
Homocysteic acid as a putative excitatory amino acid neurotransmitter: I. Postsynaptic characteristics at N-methyl-D-aspartate-type receptors on striatal cholinergic interneurons.
Topics: 2-Amino-5-phosphonovalerate; Acetylcholine; Amino Acids; Animals; Choline; Corpus Striatum; Dibenzocycloheptenes; Dizocilpine Maleate; Homocysteine; Interneurons; Magnesium; Male; Piperazines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Stereoisomerism; Tachyphylaxis; Tiletamine | 1988 |
Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Brain Mapping; Brain Stem; Cerebral Cortex; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; Guinea Pigs; Homocysteine; Interneurons; Mastication; Membrane Potentials; Neural Inhibition; Neural Pathways; Piperazines; Reaction Time; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Strychnine; Synaptic Transmission; Trigeminal Nerve; Trigeminal Nuclei | 1994 |
Release of homocysteic acid from rat thalamus following stimulation of somatosensory afferents in vivo: feasibility of glial participation in synaptic transmission.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Brain Chemistry; Chromatography, High Pressure Liquid; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Homocysteine; Iontophoresis; Kainic Acid; Male; Methionine; N-Methylaspartate; Neuroglia; Physical Stimulation; Piperazines; Rats; Rats, Wistar; Sulfur Isotopes; Synaptic Transmission; Thalamus; Vibrissae | 2004 |