3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid and bicuculline methobromide

3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid has been researched along with bicuculline methobromide in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (50.00)29.6817
2010's1 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Avoli, M; Dzakpasu, R; Gonzalez-Sulser, A; Motamedi, GK; Vicini, S; Wang, J1

Other Studies

2 other study(ies) available for 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid and bicuculline methobromide

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
The 4-aminopyridine in vitro epilepsy model analyzed with a perforated multi-electrode array.
    Neuropharmacology, 2011, Volume: 60, Issue:7-8

    Topics: 4-Aminopyridine; Animals; Anticonvulsants; Bicuculline; CA3 Region, Hippocampal; Disease Models, Animal; Electrodes; Epilepsy; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Isoxazoles; Mice; Mice, Inbred C57BL; Microarray Analysis; Motion Pictures; Piperazines; Potassium Channel Blockers; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Software; Somatosensory Cortex

2011