3-(1-deoxyribofuranosyl)benzamide has been researched along with nicotinamide-beta-riboside* in 2 studies
2 other study(ies) available for 3-(1-deoxyribofuranosyl)benzamide and nicotinamide-beta-riboside
Article | Year |
---|---|
Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans.
NAD+ is essential for life in all organisms, both as a coenzyme for oxidoreductases and as a source of ADPribosyl groups used in various reactions, including those that retard aging in experimental systems. Nicotinic acid and nicotinamide were defined as the vitamin precursors of NAD+ in Elvehjem's classic discoveries of the 1930s. The accepted view of eukaryotic NAD+ biosynthesis, that all anabolism flows through nicotinic acid mononucleotide, was challenged experimentally and revealed that nicotinamide riboside is an unanticipated NAD+ precursor in yeast. Nicotinamide riboside kinases from yeast and humans essential for this pathway were identified and found to be highly specific for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin. Nicotinamide riboside was discovered as a nutrient in milk, suggesting that nicotinamide riboside is a useful compound for elevation of NAD+ levels in humans. Topics: Chromosomes, Human, Pair 9; Energy Metabolism; Evolution, Molecular; Fungi; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Fungal; Humans; Intracellular Signaling Peptides and Proteins; Molecular Sequence Data; NAD; Niacinamide; Nucleosides; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Ribavirin; Saccharomyces cerevisiae Proteins; Sequence Homology, Amino Acid; Sequence Homology, Nucleic Acid | 2004 |
Chemical synthesis of benzamide riboside.
The C-glycosidic nicotinamide riboside analogue (1) was prepared by reaction of ribonolactone 16 with the lithiated 2-oxazoline 13 followed by triethylsilane reduction of the hemiacetal 17 to the tetrahydrofurane 18. Cleavage of the oxazoline group in 20 to the acid 21, conversion of the acid chloride 22 to the amide 23, and hydrogenative debenzylation afforded the benzamide riboside 1. Phosphorylation of the acetonide 26 and acid-catalyzed cleavage of the resulting ketal yielded the pseudonucleotide 27. Topics: Glycosides; IMP Dehydrogenase; Monosaccharides; Niacinamide; Nucleosides; Phosphorylation; Pyridinium Compounds | 2002 |