23-hydroxybetulinic-acid and betulin

23-hydroxybetulinic-acid has been researched along with betulin* in 2 studies

Reviews

1 review(s) available for 23-hydroxybetulinic-acid and betulin

ArticleYear
[Advances in the study of structural modifications and biological activities of betulinic acids].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2010, Volume: 45, Issue:11

    Betulinic acids are lupine-type pentacyclic triterpenoid saponins commonly found in some plants of Betulaceae family, especially in the bark of betula alba (birch). The potent anti-HIV and anti-tumor activities of betulinic acids have been greatly concerned. The natural betulinic acids include betulinic acid, 23-hydroxy betulinic acid, betulin and so on. Some investigations on the structural modifications of betulinic acids were carried out, and many derivatives with excellent biological activity have been obtained nowadays. In this paper, the research advances of the structural modification of betulinic acids, as well as their anti-HIV and anti-tumor activities are reviewed.

    Topics: Anti-HIV Agents; Antineoplastic Agents, Phytogenic; Betula; Betulinic Acid; Cell Line, Tumor; HIV; Humans; Pentacyclic Triterpenes; Plant Bark; Plant Leaves; Plants, Medicinal; Triterpenes

2010

Other Studies

1 other study(ies) available for 23-hydroxybetulinic-acid and betulin

ArticleYear
Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line.
    European journal of pharmacology, 2004, Sep-13, Volume: 498, Issue:1-3

    The mitochondrion plays a crucial role in the process of apoptosis and has thus become one of the targets for the search for potential chemotherapeutic agents. Betulinic acid [3beta-hydroxy-lup-20(19)lupaen-28-carbonic acid], a lupane-type triterpene which is abundant in many plant species, has been shown to exert a direct effect on the mitochondria and subsequent apoptosis in melanoma cells. Chemical synthesis and modification of betulinic acid are being explored to develop more potent derivatives. We present here the apoptotic activity of several natural derivatives of betulinic acid which were isolated from the roots of a Chinese medicinal herb, Pulsatilla chinensis (Bge) Regel [Ye, W., Ji, N.N., Zhao, S.X., Liu, J.H., Ye, T., McKervey, M.A., Stevenson, P., 1996. Triterpenoids from Pulsatilla chinensis. Phytochemistry 42, 799-802]. Of the five compounds tested, 3-oxo-23-hydroxybetulinic acid was the most cytotoxic on murine melanoma B16 cells (IC50=22.5 microg/ml), followed by 23-hydroxybetulinic acid and betulinic acid (IC50=32 and 76 microg/ml, respectively), with lupeol and betulin exhibiting the weakest cytotoxicity (IC50> or =100 microg/ml). Exposure of B16 cells to betulinic acid, 23-hydroxybetulinic acid and 3-oxo-23-hydroxybetulinic acid caused a rapid increase in reactive oxidative species production and a concomitant dissipation of mitochondrial membrane potential in a dose- and time-dependent manner, which resulted in cell apoptosis, as demonstrated by fluorescence microscopy, gel electrophoresis and flow-cytometric analysis. Cell cycle analysis further demonstrated that both 3-oxo-23-hydroxybetulinic acid and 23-hydroxybetulinic acid dramatically increased DNA fragmentation at the expense of G1 cells at doses as low as 12.5 and 25 microg/ml, respectively, thereby showing their potent apoptotic properties. Our results showed that hydroxylation at the C3 position of betulinic acid is likely to enhance the apoptotic activity of betulinic acid derivatives (23-hydroxybetulinic acid and 3-oxo-23-hydroxybetulinic acid) on murine melanoma B16 cells.

    Topics: Animals; Apoptosis; Betulinic Acid; Cell Cycle; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Inhibitory Concentration 50; Intracellular Membranes; Melanoma, Experimental; Membrane Potentials; Mice; Mitochondria; NADPH Oxidases; Pentacyclic Triterpenes; Piperidines; Propionates; Reactive Oxygen Species; Structure-Activity Relationship; Triterpenes

2004