22-hydroxycholesterol has been researched along with verapamil in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (50.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benson, SJ; Boam, WD; Liu, XH; Meikle, AW; Stringham, JD | 1 |
Abe-Dohmae, S; Arakawa, R; Inoue, K; Nishimaki-Mogami, T; Suzuki, S; Tamehiro, N; Tanaka, AR; Ueda, K; Yokoyama, S | 1 |
2 other study(ies) available for 22-hydroxycholesterol and verapamil
Article | Year |
---|---|
Nonesterified fatty acids modulate steroidogenesis in mouse Leydig cells.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Calcium; Chylomicrons; Cyclic AMP; Fatty Acids, Nonesterified; Hydroxycholesterols; Kinetics; Leydig Cells; Linoleic Acid; Linoleic Acids; Luteinizing Hormone; Male; Mice; Oleic Acid; Oleic Acids; Radioimmunoassay; Testosterone; Verapamil | 1989 |
Verapamil increases the apolipoprotein-mediated release of cellular cholesterol by induction of ABCA1 expression via Liver X receptor-independent mechanism.
Topics: 2-Hydroxypropyl-beta-cyclodextrin; Animals; Apolipoprotein A-I; ATP Binding Cassette Transporter 1; ATP Binding Cassette Transporter, Subfamily G, Member 1; ATP-Binding Cassette Transporters; beta-Cyclodextrins; Bucladesine; Calcium Channel Blockers; Cell Line; Cholesterol; DNA-Binding Proteins; Gene Expression Regulation; Genes, Reporter; Humans; Hydroxycholesterols; Lipoproteins; Lipoproteins, HDL; Liver X Receptors; Lovastatin; Macrophages; Mice; Nicardipine; Nifedipine; Orphan Nuclear Receptors; Phospholipids; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Stereoisomerism; Transfection; Verapamil | 2004 |