2-selenylbenzanilide has been researched along with ebselen* in 5 studies
5 other study(ies) available for 2-selenylbenzanilide and ebselen
Article | Year |
---|---|
Density functional theory study of the reaction mechanism and energetics of the reduction of hydrogen peroxide by ebselen, ebselen diselenide, and ebselen selenol.
Density functional theory calculations at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d,p) level have been performed to elucidate the mechanism and reaction energetics for the reduction of hydrogen peroxide by ebselen, ebselen diselenide, ebselen selenol, and their sulfur analogues. The effects of solvation have been included with the CPCM model, and in the case of the selenol anion reaction, diffuse functions were used on heavy atoms for the geometry optimizations and thermochemical calculations. The topology of the electron density in each system was investigated using the quantum theory of atoms in molecules, and a detailed interpretation of the electronic charge and population data as well as the atomic energies is presented. Reaction free energy barriers for the oxidation of ebselen, ebselen diselenide, and ebselen selenol are 36.8, 38.4, and 32.5 kcal/mol, respectively, in good qualitative agreement with experiment. It is demonstrated that the oxidized selenium atom is significantly destabilized in all cases and that the exothermicity of the reactions is attributed to the peroxide oxygen atoms via reduction. The lower barrier to oxidation exhibited by the selenol is largely due to entropic effects in the reactant complex. Topics: Algorithms; Anilides; Azoles; Benzamides; Hydrogen Peroxide; Isoindoles; Models, Chemical; Organoselenium Compounds; Oxidation-Reduction; Sulfur; Thermodynamics | 2007 |
Modeling the reduction of hydrogen peroxide by glutathione peroxidase mimics.
Theoretical calculations have been performed on three model reactions representing the reduction of hydrogen peroxide by ebselen, ebselen selenol, and ebselen diselenide. The reaction surfaces have been investigated at the B3PW91/6-311G(2df,p) level, and single-point energies were calculated using the 6-311++G(3df,3pd) basis set. Solvent effects were included implicitly with the conductor-like polarizable continuum model and in one case with explicit inclusion of three water molecules. Mechanistic information is gained from investigating the critical points using the quantum theory of atoms in molecules. The barriers for the reduction of hydrogen peroxide with the ebselen, ebselen selenol, and ebselen diselenide models are 56.7, 53.4, and 35.3 kcal/mol, respectively, suggesting that ebselen diselenide may be the most active antioxidant in the ebselen GPx redox pathway. Results are also compared to that of the sulfur analogues of the model compounds. Topics: Anilides; Azoles; Benzamides; Glutathione Peroxidase; Hydrogen Peroxide; Isoindoles; Kinetics; Models, Chemical; Molecular Structure; Organoselenium Compounds; Oxidation-Reduction; Sulfur | 2006 |
The oxidation of ebselen metabolites to thiol oxidants catalyzed by liver microsomes and perfused rat liver.
The oxidation of 2-(methylseleno)benzanilide and 2-selenylbenzanilide, metabolites of the antioxidant drug ebselen, was examined in reactions catalyzed by rat, pig, and guinea pig liver microsomes and in perfused rat liver. Microsomes from all three species catalyzed NADPH- and oxygen-dependent oxidation of the selenide and the selenol to thiol-reactive metabolites. The oxidation product of the selenide was similar in properties to the chemically synthesized selenoxide [2-(methylseleninyl)benzanilide]. The selenoxide oxidized GSH and thiocholine at rate constants of 1.2 x 10(2) and 7.2 x 10(2) M-1 s-1, respectively at pH 7.4, 37 degrees C. n-Octylamine stimulated the oxidation of the ring-opened metabolites of ebselen catalyzed by pig and guinea pig liver microsomes but it had essentially no effect on these activities in rat liver microsomes. The selenoxidase activity of microsomes from all three species was partially (30-50%) sensitive to N-benzylimidazole. The effects of n-octylamine and the imidazole suggest that the oxidation of the selenide was catalyzed primarily by enzymes with the properties of flavin-containing and P450-dependent monooxygenases, but the nature of enzymes responsible for a small fraction of the N-benzylimidazole-sensitive activity was not fully resolved. The 2-(methylseleno)benzanilide oxidase activity of pig liver microsomes sensitive to N-benzylimidazole was only partially sensitive to antisera to pig liver NADPH-cytochrome P450 reductase. While neither 2-(methylseleno)benzanilide nor ebselen affected bile flow, the biliary efflux of GSSG was stimulated about fourfold in rat liver perfused with either of these selenium compounds. The increased GSSG efflux produced by 5 microM ebselen or its methyl metabolite was abolished by N-benzylimidazole. Topics: Anilides; Animals; Antioxidants; Azoles; Guinea Pigs; Isoindoles; Liver; Male; Methimazole; Microsomes, Liver; NADP; Organoselenium Compounds; Oxidation-Reduction; Perfusion; Rats; Rats, Sprague-Dawley; Rats, Wistar; Species Specificity; Sulfhydryl Compounds; Swine | 1995 |
Characterisation and quantitation of a selenol intermediate in the reaction of ebselen with thiols.
The reaction of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) with thiols was investigated with particular attention to the formation of an ebselen selenol intermediate. The selenol intermediate could be trapped in a mixture of ebselen and thiols with 1-chloro-2,4-dinitrobenzene and the resulting product displayed unique spectral characteristics. The reaction of authentic, synthesised ebselen selenol with 1-chloro-2,4-dinitrobenzene (CDNB) was shown to give rise to the same compound (2,4-dinitrophenyl (N-phenyl-2-carboxamido phenyl) selenide as characterized by light spectroscopy, NMR, IR and elemental analysis. The determination of the absorbtion coefficient at 400 nm (E = 7.5 mM-1 cm-1) and the initial rate constant of the reaction (1.4 +/- 0.3 mM-1 min-1) allows for the convenient quantification of ebselen selenol concentrations by initial rate measurements after addition of CDNB. The choice of 400 nm to monitor the reaction excludes the interference of other intermediates in the reaction of ebselen with thiols as well as the reaction of the thiols with CDNB. When the assay is applied to typical incubation conditions used for investigating the glutathione peroxidase-like activity of ebselen it was shown that as much as 10-20% of ebselen is in the selenol form. If a stronger reductant (dithiothreitol) is used 60% is in the selenol form. These data could also be confirmed by the direct determination of ebselen selenol by UV spectroscopy, due to its peak absorption at 370 nm (E = 2 mM-1 cm-1). In conclusion, this investigation demonstrates, for the first time, the identity and quantity of ebselen selenol in the reaction of ebselen with thiols and also describes a convenient assay for its quantification. These observations allow further possibilities for investigation of the molecular species responsible for the antioxidant and peroxidase activities of ebselen. Topics: Anilides; Azoles; Benzamides; Dinitrochlorobenzene; Glutathione; Glutathione Peroxidase; Isoindoles; Magnetic Resonance Spectroscopy; Organoselenium Compounds; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Spectrum Analysis; Sulfhydryl Compounds | 1992 |
Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity.
The molecular basis of the glutathione peroxidase activity of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) was investigated by the use of synthesised, authentic intermediates identical to those formed by the reaction of ebselen with glutathione. The second order rate constants for the reaction of ebselen (0.29 mM-1 min-1), ebselen-glutathione selenosulfide (less than or equal to 0.01 mM-1 min-1), ebselen selenol (2.8 mM-1 min-1) and ebselen diselenide (0.32 mM-1 min-1) with hydrogen peroxide reveal that the selenol is particularly active in this respect. The determination of the relative amounts of ebselen selenol and diselenide under typical peroxidase assay conditions implies that the selenol is the predominant molecular species responsible for the glutathione--(70%)--and dithiothreitol--(96%)--dependent peroxidase activity of ebselen. Topics: Anilides; Azoles; Benzamides; Dithiothreitol; Glutathione; Glutathione Peroxidase; Hydrogen Peroxide; Isoindoles; Kinetics; Organoselenium Compounds; Selenium; Selenium Compounds | 1992 |