2-phenylmelatonin and luzindole

2-phenylmelatonin has been researched along with luzindole* in 2 studies

Other Studies

2 other study(ies) available for 2-phenylmelatonin and luzindole

ArticleYear
Characterization of melatonin binding sites in the brain and retina of the frog Rana perezi.
    General and comparative endocrinology, 2004, Volume: 135, Issue:3

    The aim of this study was to characterize 2-[125I]iodomelatonin binding sites in the neural retina and central nervous system (telencephalon, diencephalon, and optic tectum) of the anuran amphibian Rana perezi. Saturation and kinetic studies and pharmacological characterization revealed the existence of a unique melatonin-binding site that belongs to the Mel 1 receptor subtype. The affinity of this site is similar in all tissues studied (Kd, 10.5-12.8 pM), but the density varied from diencephalon and optic tectum, which exhibit the highest density, to telencephalon with the lowest. Neural retina showed an intermediate receptor density. This melatonin-binding site fulfills the requirements of a real hormone receptor; the binding is saturable, reversible, and inhibited by different melatonin agonists and antagonists. The affinity order of ligands is: 2-phenyl-melatonin = 2-I-melatonin > 6-Cl-melatonin = melatoninz >> luzindole. Additionally, specific binding is decreased by non-hydrolysable GTP analogue, sodium, and by pretreatment of membranes with pertussis toxin. All these results suggest the existence of a widely distributed and pharmacologically homogeneous melatonin receptor of the subfamily Mel 1 in the nervous system of Rana perezi coupled to a Gi/o protein.

    Topics: Animals; Binding Sites; Binding, Competitive; Brain; Cell Membrane; Diencephalon; Guanosine 5'-O-(3-Thiotriphosphate); Intracellular Membranes; Kinetics; Magnesium; Melatonin; Pertussis Toxin; Radioligand Assay; Ranidae; Receptors, Melatonin; Retina; Sodium; Subcellular Fractions; Superior Colliculi; Telencephalon; Tetrahydronaphthalenes; Tryptamines

2004
Melatonin receptors in rat hippocampus: molecular and functional investigations.
    Hippocampus, 2002, Volume: 12, Issue:2

    Since binding sites for melatonin have been found in the hippocampus of several mammals, it has been suggested that the pineal hormone melatonin is able to modulate neuronal functions of hippocampal cells. In order to get more insight into the role of melatonin for the functions of hippocampal cells, the following experiments were performed: male rats, maintained under a 12/12-h light-dark cycle, were sacrificed by decapitation at zeitgeber times (h) ZT2, ZT8, and ZT15 (ZT0 = lights on); for experiment 1, gene expression for melatonin receptors was detected in the hippocampus and in hippocampal subfields by means of the RT-PCR technique; for experiment 2, electrophysiological and pharmacological properties of melatonin receptors heterologously expressed in Xenopus oocytes after injection of mRNA from the hippocampus were analyzed by means of voltage clamp technique; and for experiment 3, effects of melatonin on the spontaneous firing rate of action potentials in the CA1 regions of hippocampal slices were analyzed by means of extracellular recordings. The RT-PCR data revealed that transcripts for both the MT1 and MT2 melatonin receptors are present in the dentate gyrus, CA3, and CA1 regions, and the subiculum of the hippocampus. Injection of mRNA from rat hippocampus into the Xenopus oocytes led to the functional reconstitution of melatonin-sensitive receptors, which activates calcium-dependent chloride inward currents. The melatonin responses were abolished by simultaneous administration of the antagonists 2-phenylmelatonin and luzindole, and were unaffected by the MT2 antagonist 4-phenyl-2-propionamidotetralin. Bath-applied melatonin (1 micromol/l) enhances the firing rate of neurons in the CA1 region. The effect was small in experiments performed at ZT8 (<2 times the initial level) and large in experiments performed at ZT15 (>6 times). The changes of neuronal firing rate induced by melatonin were completely suppressed with simultaneous administration of the melatonin receptor antagonist luzindole (10 micromol/l). The results indicate that melatonin may play an important role in modulating neuronal excitability in the hippocampus.

    Topics: Animals; Circadian Rhythm; Electrophysiology; Hippocampus; Male; Melatonin; Membrane Potentials; Oocytes; Organ Culture Techniques; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear; Receptors, Melatonin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tetrahydronaphthalenes; Tryptamines; Xenopus

2002